×

Some kernels on a Riemann surface. (English) Zbl 0937.30025

The principal aim of the paper is to discuss and revise the derivation of different realizations of the Cauchy kernel \(K(\lambda, \mu)={1 \over P(\lambda)-P (\mu)}\), on Riemann surfaces, where \(\lambda\) and \(\mu\) are local coordinates of points \(P(\lambda)\), \(P(\mu)\). The first realization leads to the expression \(K(\lambda,\mu) =\sum^\infty_1 {d\Omega_j\over d \Omega_1} (\lambda) {\mu^{-1} \over j}\), where \(\partial\Omega_s\) is normalized second kind meromorphic differential with principal part of the unique pole of the form \(-sz^{-s-1}dx\). This expression is shown to be written in terms of the local Cauchy kernel \(Z_p(x)= (d/dx) \log E(x,p)\), where \(E(x,p)\) is a Fay-Klein prime form, which is given in terms of \(\theta\)-functions and \(-1/2\)-holomorphic differentials. The second realization is given in terms of the Baker-Akhiezer function of the curve and then the Cauchy-Baker-Akhiezer kernel is given as \[ d\omega (k,k',x,y,t, \dots)= {1\over 2 \pi i} \int^x_{\pm \infty} \psi(k, x',y,t, \dots) \psi^† (k',x',y,t, \dots) dx', \] where \(x,y,t, \dots= {\mathbf t}\) are the “times” of integrable hierarchy of KP-type, the Baker-Akhiezer function \(\psi\) is expanded near the essential singularity as \(\exp [\xi({\mathbf t}, k)] \cdot(1+ \sum^\infty_1 \chi_i k^{-i})\) where \(k\) is a local coordinate, the function \(\psi^†= \psi^* d\widehat \Omega\sim \exp[\xi( {\mathbf t},k)] \cdot (1+\sum^\infty_1 \chi^*_i k^{-i}(1+ \beta/k^2+ \dots))\), where \(d\widehat \Omega\) is the meromorphic differential with zeros in \(D+D^*\) and double pole at \(\infty\). The kernel construction developed in the paper was applied to solve the dispersionless KP hierarchy and show its equivalency to the dispersionless differential Fay identity. The paper contains a preliminary material on Riemann surfaces. Baker-Akhiezer functions, integrable hierarchies, Hirota bilinear equations being based on the previous publications of the author. In particular the realization of \(\tau\) functions of the dispersionless KP in terms of Schur polynomials was given.

MSC:

30F30 Differentials on Riemann surfaces
14H05 Algebraic functions and function fields in algebraic geometry
14H40 Jacobians, Prym varieties

References:

[1] DOI: 10.1002/cpa.3160470103 · Zbl 0801.58014 · doi:10.1002/cpa.3160470103
[2] Alvarez Gaumé L., World Scientific pp 135– (1988)
[3] Baker, H. 1897. ”Abelian functions”. Cambridge Univ.press.
[4] Carroll, R. 1991. ”Topics in soliton theory”. North-Holland · Zbl 0777.35072
[5] Carroll R., Jour Phys 28 pp 6373– (1995)
[6] Carroll R., Teor.Mat.Fizika 4 pp 519,220– (1994)
[7] Carroll R., World Scientific 94 pp 24– (1995)
[8] Carroll R. solv-int 9511009
[9] Carroll, R. 1996. ”Second World Congress Nonlinear Analysts,”. North-Holland: Athens. solv-int 9606005, Proc.to appear
[10] Carroll R., Mod. Phys. Lett. A, to appear
[11] Carroll R., hepth 9610216
[12] Carroll R., The Whitham equations revisited · Zbl 0887.14011
[13] Carroll R., Proc.NEEDS Workshop Dubna 122 pp 23,2– (1991)
[14] Cherednik J., World scientific (1996)
[15] D’Hoker E., hepth 9609041, 9609145, and 9610156
[16] Fay J., Springer Lect. Notes Math. 352 (1973)
[17] Gibbons J., Plenum pp 61– (1994)
[18] Griffiths P., Amer. Math. Soc. (1989)
[19] Grinevich P., Plenum pp 67– (1994)
[20] Gunning, R. 1966. ”Lectures on Riemann surfaces,”. Princeton Univ. Press. · Zbl 0175.36801
[21] Itoyama H., hepth 9511126, 9512161, and 96011686
[22] Hejhal D., Math soc 129 (1972)
[23] Kodama Y., World Scientific pp 166– (1990)
[24] Kodama Y., unpublished (1991)
[25] Kodama Y., Prog.Theor.Phys,Supp. 129 pp 223,184– (1988)
[26] DOI: 10.1007/BF01077626 · Zbl 0688.35088 · doi:10.1007/BF01077626
[27] Krichever I., hepth 9604199
[28] Krichever I., hepth 9604199
[29] Miranda R., Amer.Math.So (1995)
[30] Mumford D., Lectures on theta, 1 and 2, Birkhäuser (1983) · Zbl 0509.14049 · doi:10.1007/978-1-4899-2843-6
[31] Nakatsu T., hep-th 9509162
[32] Novikov S., Plenum (1984)
[33] Osgood W., Chelsea (1965)
[34] Rodin Yu, Reidel (1988)
[35] Springer G., Chelsea (1981)
[36] Taimanov I., alg-geom 9609016
[37] DOI: 10.1142/S0129055X9500030X · Zbl 0838.35117 · doi:10.1142/S0129055X9500030X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.