×

Spaces of geometrically generic configurations. (English) Zbl 1144.32010

Summary: Let \(X\) denote either \(\mathbb {CP}^m\) or \(\mathbb {C}^m\). We study certain analytic properties of the space \(\mathcal {E}^n(X,gp)\) of ordered geometrically generic \(n\)-point configurations in \(X\). This space consists of all \(q=(q_{1},\dots ,q_{n}) \in X^{n}\) such that no \(m + 1\) of the points \(q_1,\dots ,q_n\) belong to a hyperplane in \(X\). In particular, we show that for large enough \(n\) any holomorphic map \(f : \mathcal {E}^n(\mathbb {CP}^m,gp) \to {\mathcal E}^n(\mathbb {CP}^m,gp)\) commuting with the natural action of the symmetric group \(S(n)\) in \({\mathcal E}^n(\mathbb {CP}^m,gp)\) is of the form \(f(q) = \tau(q)q = (\tau(q)q_{1},\dots ,\tau(q)q_{n})\), \(q \in {\mathcal E}^n(\mathbb {CP}^m,gp)\), where \(\tau:{\mathcal E}^n(\mathbb {CP}^m,gp) \to \text{PSL}(m+1,\mathbb C)\) is an S(\(n\))-invariant holomorphic map. A similar result holds true for mappings of the configuration space \({\mathcal E}^n(\mathbb {C}^m,gp)\).

MSC:

32H25 Picard-type theorems and generalizations for several complex variables
14J50 Automorphisms of surfaces and higher-dimensional varieties
32H02 Holomorphic mappings, (holomorphic) embeddings and related questions in several complex variables
32M99 Complex spaces with a group of automorphisms

References:

[1] Barvinok, A. I.: Homological type of spaces of configurations of structurally stable type in 2 C . Mat. Zametki 39, 108-112 (1986) (in Russian) · Zbl 0601.51022 · doi:10.1007/BF01647633
[2] Efimov, N. V.: Higher Geometry. Translated from the sixth Russian edition by P. C. Sinha, Mir, Moscow (1980) · Zbl 0457.51001
[3] Feler, Y.: Configuration spaces of tori. Rend. Lincei Mat. Appl. 18, 139-151 (2007) · Zbl 1223.32014 · doi:10.4171/RLM/486
[4] Lin, V. Ya.: Algebraic functions with universal discriminant manifolds. Funct. Anal. Appl. 6, 73-75 (1972) · Zbl 0249.12101 · doi:10.1007/BF01075518
[5] Lin, V. Ya.: Artin braids and the groups and spaces connected with them. Itogi Nauki i Tekhniki, Algebra, Topologiya, Geometriya 17, VINITI, Moscow, 159-227 (1979) (in Rus- sian); English transl.: J. Soviet Math. 18, 736-788 (1982) · Zbl 0479.20016 · doi:10.1007/BF01091963
[6] Lin, V. Ya.: Configuration spaces of 1 C and CP : some analytic properties. Max-Planck-Institut für Mathematik Preprint Series 2003 (98), Bonn, 80 pp. (2003); Revised electronic version arXiv:math.AG/0403120
[7] Möbius, A. F.: Der barycentrische Calcul. Verlag von Johann Ambrosius Barth, Leipzig (1827) · Zbl 0355.01010
[8] Moulton, V. L.: Vector braids. J. Pure Appl. Algebra 131, 245-296 (1998) · Zbl 0999.20027 · doi:10.1016/S0022-4049(98)00006-1
[9] Terasoma, T.: Fundamental groups of moduli spaces of hyperplane configurations. http://gauss.ms.u-tokyo.ac.jp/paper/paper.html · Zbl 0884.14002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.