×

Qualitative and numerical aspects of a motion of a family of interacting curves in space. (English) Zbl 1539.53102

Summary: In this article we investigate a system of geometric evolution equations describing a curvature driven motion of a family of three-dimensional curves in the normal and binormal directions. Evolving curves may be the subject of mutual interactions having both local or nonlocal character where the entire curve may influence evolution of other curves. Such an evolution and interaction can be found in applications. We explore the direct Lagrangian approach for treating the geometric flow of such interacting curves. Using the abstract theory of nonlinear analytic semiflows, we are able to prove local existence, uniqueness, and continuation of classical Hölder smooth solutions to the governing system of nonlinear parabolic equations. Using the finite volume method, we construct an efficient numerical scheme solving the governing system of nonlinear parabolic equations. Additionally, a nontrivial tangential velocity is considered allowing for redistribution of discretization nodes. We also present several computational studies of the flow combining the normal and binormal velocity and considering nonlocal interactions.

MSC:

53E10 Flows related to mean curvature
35K57 Reaction-diffusion equations
35K65 Degenerate parabolic equations
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
65J08 Numerical solutions to abstract evolution equations

References:

[1] S. J. Altschuler, Singularities of the curve shrinking flow for space curves, J. Differ. Geom., 34 (1991), pp. 491-514. · Zbl 0754.53006
[2] S. J. Altschuler and M. Grayson, Shortening space curves and flow through singularities, J. Differ. Geom., 35 (1992), pp. 283-298. · Zbl 0782.53001
[3] M. Ambrož, M. Balažovjech, M. Medľa, and K. Mikula, Numerical modeling of wildland surface fire propagation by evolving surface curves, Adv. Comput. Math., 45 (2019), pp. 1067-1103. · Zbl 1415.65206
[4] S. Angenent, Parabolic equations for curves on surfaces. I: Curves with \(p\)-integrable curvature, Ann. Math., 132 (1990), pp. 451-483. · Zbl 0789.58070
[5] S. Angenent, Nonlinear analytic semi-flows, Proc. Roy. Soc. Edinburgh Sect. A, 115 (1990), pp. 91-107. · Zbl 0723.34047
[6] R.J. Arms and F. R. Hama, Localized induction concept on a curved vortex and motion of an elliptic vortex ring, Phys. Fluids, 8 (1965), pp. 553-559.
[7] J. W. Barrett, H. Garcke, and R. Nürnberg, Numerical approximation of gradient flows for closed curves in \(R^d\), IMA J. Numer. Anal., 30 (2010), pp. 4-60. · Zbl 1185.65027
[8] J. W. Barrett, H. Garcke, and R. Nürnberg, Parametric approximation of isotropic and anisotropic elastic flow for closed and open curves, Numer. Math., 120 (2012), pp. 489-542. · Zbl 1242.65188
[9] R. Betchov, On the curvature and torsion of an isolated vortex filament, J. Fluid Mech., 22 (1965), pp. 471-479. · Zbl 0133.43803
[10] M. Beneš, M. Kolář M, and D. Ševčovič, Curvature driven flow of a family of interacting curves with applications, Math. Methods Appl. Sci., 43 (2020), pp. 4177-4190. · Zbl 1447.35187
[11] G. P. Bewley, M. S. Paoletti, K. R. Sreenivasan, and D. P. Lathrop, Characterization of reconnecting vortices in super-fluid helium, Proc. Natl. Acad. Sci. USA, 105 (2008), pp. 13707-13710.
[12] L. Bronsard and B. Stoth, Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation, SIAM J. Math. Anal., 28 (1997), pp. 769-807, https://doi.org/10.1137/S0036141094279279. · Zbl 0874.35009
[13] G. Da Prato and P. Grisvard, Equations d’évolution abstraites non linéaires de type parabolique, Ann. Mat. Pura Appl (4), 120 (1979), pp. 329-396. · Zbl 0471.35036
[14] K. Deckelnick, Parametric mean curvature evolution with a Dirichlet boundary condition, J. Reine Angew. Math., 459 (1995), pp. 37-60. · Zbl 0810.53002
[15] L. S. Da Rios, Sul Moto di un filetto vorticoso di forma qualunque, Rend. Circ. Mat. Palermo, 22 (1906), pp. 117-135. · JFM 37.0764.01
[16] B. Devincre, T. Hoc, and L. P. Kubin, Dislocation mean free paths and strain hardening of crystals, Science, 320 (2008), pp. 1745-1748.
[17] Ch. M. Elliott and H. Fritz, On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick, IMA J. Numer. Anal., 37 (2017), pp. 543-603. · Zbl 1433.65219
[18] C. L. Epstein and M. Gage, The Curve Shortening Flow, Wave Motion: Theory, Modelling, and Computation, A. J. Chorin and A. J. Majda, eds., Math. Sci. Res. Inst. Publ. 7, Springer, New York, 1987. · Zbl 0645.53028
[19] J. Fierling, A. Johner, I. M. Kulic, H. Mohrbach, and M. M. Mueller, How bio-filaments twist membranes, Soft Matter, 12 (2016), pp. 5747-5757.
[20] Y. Fukumoto, On Integral invariants for vortex motion under the localized induction approximation, J. Phys. Soc. Jpn., 56 (1987), pp. 4207-4209.
[21] Y. Fukumoto and T. Miyzaki Three-dimensional distortions of a vortex filament with axial velocity, J. Fluid Mech., 222 (1991), pp. 369-416. · Zbl 0719.76020
[22] M. Gage, On an area-preserving evolution equation for plane curves, Contemp. Math., 51 (1986), pp. 51-62. · Zbl 0608.53002
[23] H. Garcke, Y. Kohsaka, and D. Ševčovič, Nonlinear stability of stationary solutions for curvature flow with triple junction, Hokkaido Math. J., 38 (2009), pp. 721-769. · Zbl 1187.35013
[24] M. K. Glagolev and V. V. Vasilevskaya, Liquid-crystalline ordering of filaments formed by bidisperse amphiphilic macromolecules, Polym. Sci. Ser. C, 60 (2018), pp. 39-47.
[25] J-H. He, Y. Liu, L-F. Mo, Y-Q. Wan, and L. Xu, Electrospun Nanofibres and Their Applications, iSmithers, Shawbury, Shrewsbury, UK, 2008.
[26] H. Helmholtz, Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math., 55 (1858), pp. 25-55. · ERAM 055.1448cj
[27] J. P. Hirth and J. Lothe, Theory of Dislocations, John Wiley, New York, 1982. · Zbl 1365.82001
[28] T. Y. Hou, J. Lowengrub, and M. Shelley, Removing the stiffness from interfacial flows and surface tension, J. Comput. Phys., 114 (1994), pp. 312-338. · Zbl 0810.76095
[29] F. de la Hoz and L. Vega, Vortex filament equation for a regular polygon, Nonlinearity, 27 (2014), pp. 3031-3057. · Zbl 1339.35300
[30] T. Ishiwata and K. Kumazaki, Structure-preserving finite difference scheme for vortex filament motion, in Algoritmy 2012, Proceedings of the 19th Annual Conference on Scientific Computing, Vysoka Tatry - Podbanska, Slovakia, 2012, Slovak University of Technology in Bratislava, Publishing House of STU, 2012, pp. 230-238. · Zbl 1278.76075
[31] R. L. Jerrard and D. Smets, On the motion of a curve by its binormal curvature, J. Eur. Math. Soc., 17 (2015), pp. 1487-1515. · Zbl 1327.53086
[32] R. L. Jerrard and C. Seis, On the vortex filament conjecture for Euler flows, Arch. Ration. Mech. Anal., 224 (2017), pp. 135-172. · Zbl 1371.35205
[33] M. Kang, H. Cui, and S. M. Loverde, Coarse-grained molecular dynamics studies of the structure and stability of peptide-based drug amphiphile filaments, Soft Matter, 13 (2017), pp. 7721-7730.
[34] D. A. Kessler, J. Koplik, and H. Levine, Numerical simulation of two-dimensional snowflake growth, Phys. Rev. A, 30 (1984), pp. 2820-2823.
[35] M. Kimura, Numerical analysis for moving boundary problems using the boundary tracking method, Jpn. J. Indust. Appl. Math., 14 (1997), pp. 373-398. · Zbl 0892.76065
[36] M. Kolář, M. Beneš, and D. Ševčovič, Computational studies of conserved mean-curvature flow, Math. Bohem., 139 (2014), pp. 677-684. · Zbl 1349.65374
[37] M. Kolář, M. Beneš, and D. Ševčovič, Computational analysis of the conserved curvature driven flow for open curves in the plane, Math. Comput. Simulation, 126 (2016), pp. 1-13. · Zbl 1540.53117
[38] M. Kolář, M. Beneš, and D. Ševčovič, Area preserving geodesic curvature driven flow of closed curves on a surface, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), pp. 3671-3689. · Zbl 1516.35230
[39] M. Kolář, P. Pauš, J. Kratochvíl, and M. Beneš, Improving method for deterministic treatment of double cross-slip in FCC metals under low homologous temperatures, Comput. Mater. Sci., 189 (2021), 110251.
[40] L. P. Kubin, Dislocations, Mesoscale Simulations and Plastic Flow, Oxford University Press, Oxford, 2013.
[41] T. Laux and N. K. Yip, Analysis of diffusion generated motion for mean curvature flow in codimension two: A gradient-flow approach, Arch. Ration. Mech. Anal., 232 (2019), pp. 1113-1163. · Zbl 1411.53050
[42] A. Lunardi, Abstract quasilinear parabolic equations, Math. Ann., 267 (1984), pp. 395-416. · Zbl 0547.35054
[43] R. Mariani and K. Kontis, Experimental studies on coaxial vortex loops, Phys. Fluids, 22 (2010), 126102.
[44] V. V. Meleshko, A. A. Gourjii, and T. S. Krasnopolskaya, Vortex rings: History and state of the art, J. Math. Sci., 187 (2012), pp. 772-808. · Zbl 1274.76180
[45] K. Mikula and D. Ševčovič, Evolution of plane curves driven by a nonlinear function of curvature and anisotropy, SIAM J. Appl. Math., 61 (2001), pp. 1473-1501, https://doi.org/10.1137/S0036139999359288. · Zbl 0980.35078
[46] K. Mikula and D. Ševčovič, Computational and qualitative aspects of evolution of curves driven by curvature and external force, Comput. Vis. Sci., 6 (2004), pp. 211-225. · Zbl 1522.53008
[47] K. Mikula, J. Urbán, M. Kollár, M. Ambrož, T. Jarolímek, J. Šibík, and M. Šibíková, Semi-automatic segmentation of Natura 2,000 habitats in Sentinel-2 satellite images by evolving open curves, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), pp. 1033-1046. · Zbl 1468.35215
[48] K. Mikula and J. Urbán, A new tangentially stabilized 3D curve evolution algorithm and its application in virtual colonoscopy, Adv. Comput. Math., 40 (2014), pp. 819-837. · Zbl 1296.65030
[49] K. Mikula and D. Ševčovič, A direct method for solving an anisotropic mean curvature flow of plane curves with an external force, Math. Methods Appl. Sci., 27 (2004), pp. 1545-1565. · Zbl 1049.35019
[50] J. Minarčík, M. Kimura and M. Beneš, Comparing motion of curves and hypersurfaces in \(R^m\), Discrete Contin. Dyn. Syst. Ser. B, 9 (2019), pp. 4815-4826. · Zbl 1432.53006
[51] J. Minarčík and M. Beneš, Long-term behavior of curve shortening flow in \(R^3\), SIAM J. Math. Anal., 52 (2020), pp. 1221-1231, https://doi.org/10.1137/19M1248522. · Zbl 1435.53067
[52] T. Mura, Micromechanics of Defects in Solids, Springer, Netherlands, 1987. · Zbl 0652.73010
[53] P. Pauš, J. Kratochvíl, and M. Beneš, A dislocation dynamics analysis of the critical cross-slip annihilation distance and the cyclic saturation stress in fcc single crystals at different temperatures, Acta Mater., 61 (2013), pp. 7917-7923.
[54] P. Pauš , M. Beneš, M. Kolář, and J. Kratochvíl, Dynamics of dislocations described as evolving curves interacting with obstacles, Model. Simul. Mater. Sci., 24 (2016), 035003.
[55] M. Remešíková, K. Mikula, P. Sarkoci, and D. Ševčovič, Manifold evolution with tangential redistribution of points, SIAM J. Sci. Comput., 36 (2014), pp. A1384-A1414, https://doi.org/10.1137/130927668. · Zbl 1328.53086
[56] D. H. Reneker and A. L. Yarin, Electrospinning jets and polymer nanofibers, Polymer, 49 (2008), pp. 2387-2425.
[57] R. L. Ricca, Physical interpretation of certain invariants for vortex filament motion under LIA, Phys. Fluids, 4 (1992), pp. 938-944. · Zbl 0756.76016
[58] A. Roux, K. Uyhazi, A. Frost, and P. De Camilli, GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission, Nature, 441 (2006), pp. 528-531.
[59] J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equation and nucleation, IMA J. Appl. Math., 48 (1992), pp. 249-264. · Zbl 0763.35051
[60] D. Ševčovič and S. Yazaki, Computational and qualitative aspects of motion of plane curves with a curvature adjusted tangential velocity, Math. Methods Appl. Sci., 35 (2012), pp. 1784-1798. · Zbl 1255.35148
[61] R. Shlomovitz and N. S. Gov, Membrane-mediated interactions drive the condensation and coalescence of FtsZ rings, Phys. Biol., 6 (2009), 046017.
[62] R. Shlomovitz, N. S. Gov, and A. Roux, Membrane-mediated interactions and the dynamics of dynamin oligomers on membrane tubes, New J. Phys., 13 (2011), 065008.
[63] J. Strain, A boundary integral approach to unstable solidification, J. Comput. Phys., 85 (1989), pp. 342-389. · Zbl 0685.65109
[64] W. Thomson, On vortex atoms, Proc. Roy. Soc. Edinburgh, 6 (1867), pp. 94-105.
[65] L. Vega, The dynamics of vortex filaments with corners, Commun. Pure Appl. Anal., 14 (2015), pp. 1581-1601. · Zbl 1318.35110
[66] X.-F. Wu, Y. Salkovskiy, and Y. A. Dzenis, Modeling of solvent evaporation from polymer jets in electrospinning, Appl. Phys. Lett., 98 (2011), 223108.
[67] G. Xu, Geometric Partial Differential Equations for Space Curves, Report ICMSEC-12-13 2012, Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing, China, 2012.
[68] L. Xu, H. Liu, N. Si, and E. W. M. Lee, Numerical simulation of a two-phase flow in the electrospinning process, Int. J. Numer. Method. H., 24 (2014), pp. 1755-1761.
[69] A. Yarin, B. Pourdeyhimi, and S. Ramakrishna, Fundamentals and Applications of Micro- and Nanofibers, Cambridge University Press, Cambridge, UK, 2014.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.