×

A stable and structure-preserving scheme for a non-local Allen-Cahn equation. (English) Zbl 1403.65043

Summary: We propose a stable and structure-preserving finite difference scheme for a non-local Allen-Cahn equation which describes a process of phase separation in a binary mixture. The proposed scheme inherits characteristic properties, the conservation of mass and the decrease of the global energy from the equation. We show the stability and unique existence of the solution of the scheme. We also prove the error estimate for the scheme. Numerical experiments demonstrate the effectiveness of the proposed scheme.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Allen, SM; Cahn, JW, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27, 1085-1095, (1979) · doi:10.1016/0001-6160(79)90196-2
[2] Bao, W., Approximation and comparison for motion by mean curvature with intersection points, Comput. Math. Appl., 46, 1211-1228, (2003) · Zbl 1049.65012 · doi:10.1016/S0898-1221(03)90213-6
[3] Beneš, M., Diffuse-interface treatment of the anisotropic mean-curvature flow, Appl. Math., 48, 437-453, (2003) · Zbl 1099.53044 · doi:10.1023/B:APOM.0000024485.24886.b9
[4] Beneš, M.; Chalupecky, V.; Mikula, K., Geometrical image segmentation by the Allen-Cahn equation, Appl. Numer. Math., 51, 187-205, (2004) · Zbl 1055.94502 · doi:10.1016/j.apnum.2004.05.001
[5] Beneš, M.; Yazaki, S.; Kimura, M., Computational studies of non-local anisotropic Allen-Cahn equation, Math. Bohem., 136, 429-437, (2011) · Zbl 1249.35153
[6] Brassel, M.; Bretin, E., A modified phase field approximation for mean curvature flow with conservation of the volume, Math. Methods Appl. Sci., 34, 1157-1180, (2011) · Zbl 1235.49082 · doi:10.1002/mma.1426
[7] Bronsard, L.; Stoth, B., Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation, SIAM J. Math. Anal., 28, 769-807, (1997) · Zbl 0874.35009 · doi:10.1137/S0036141094279279
[8] Chen, LQ, Phase-field models for microstructure evolution, Annu. Rev. Mater. Res., 32, 113-140, (2002) · doi:10.1146/annurev.matsci.32.112001.132041
[9] Chen, X.; Hilhorst, D.; Logak, E., Mass conserving Allen-Cahn equation and volume preserving mean curvature flow, Interface Free Bound., 12, 527-549, (2010) · Zbl 1219.35018 · doi:10.4171/IFB/244
[10] Conti, M.; Meerson, B.; Peleg, A.; Sasorov, PV, Phase ordering with a global conservation law: Ostwald ripening and coalescence, Phys. Rev. E, 65, 046117, (2002) · doi:10.1103/PhysRevE.65.046117
[11] Dobrosotskaya, JA; Bertozzi, AL, A wavelet-Laplace variational technique for image deconvolution and inpainting, IEEE Trans. Image Process., 17, 657-663, (2008) · doi:10.1109/TIP.2008.919367
[12] Evans, LC; Soner, HM; Souganidis, PE, Phase transitions and generalized motion by mean curvature, Commun. Pure Appl. Math., 45, 1097-1123, (1992) · Zbl 0801.35045 · doi:10.1002/cpa.3160450903
[13] Feng, X.; Prohl, A., Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows, Numer. Math., 94, 33-65, (2003) · Zbl 1029.65093 · doi:10.1007/s00211-002-0413-1
[14] Golovaty, D., The volume-preserving motion by mean curvature as an asymptotic limit of reaction-diffusion equations, Q. Appl. Math., 55, 243-298, (1997) · Zbl 0878.35059 · doi:10.1090/qam/1447577
[15] Furihata, D., A stable and conservative finite difference scheme for the Cahn-Hilliard equation, Numer. Math., 87, 675-699, (2001) · Zbl 0974.65086 · doi:10.1007/PL00005429
[16] Furihata, D., Matsuo, T.: Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations. CRC Press, Boca Raton (2010) · Zbl 1227.65094 · doi:10.1201/b10387
[17] Ilmanen, T., Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Differ. Geom., 38, 417-461, (1993) · Zbl 0784.53035 · doi:10.4310/jdg/1214454300
[18] Katsoulakis, M.; Kossioris, GT; Reitich, F., Generalized motion by mean curvature with Neumann conditions and the Allen-Cahn model for phase transitions, J. Geom. Anal., 5, 255-279, (1995) · Zbl 0827.35003 · doi:10.1007/BF02921677
[19] Kim, J.; Lee, S.; Choi, Y., A conservative Allen-Cahn equation with a space-time dependent Lagrange multiplier, Int. J. Eng. Sci., 84, 11-17, (2014) · Zbl 1425.65089 · doi:10.1016/j.ijengsci.2014.06.004
[20] Lee, HG, High-order and mass conservative methods for the conservative Allen-Cahn equation, Comput. Math. Appl., 72, 620-631, (2016) · Zbl 1359.65216 · doi:10.1016/j.camwa.2016.05.011
[21] Li, Y.; Kim, J., Multiphase image segmentation using a phase-field model, Comput. Math. Appl., 62, 737-745, (2011) · Zbl 1228.94009 · doi:10.1016/j.camwa.2011.05.054
[22] Ohtsuka, T., Motion of interfaces by an Allen-Cahn type equation with multiple-well potentials, Asymptot. Anal., 56, 87-123, (2008) · Zbl 1140.35338
[23] Rubinstein, J.; Sternberg, P., Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl. Math., 48, 249-264, (1992) · Zbl 0763.35051 · doi:10.1093/imamat/48.3.249
[24] Stafford, D.; Ward, MJ; Wetton, B., The dynamics of drops and attached interfaces for the constrained Allen-Cahn equation, Eur. J. Appl. Math., 12, 1-24, (2001) · Zbl 0988.76095 · doi:10.1017/S0956792501004272
[25] Takasao, K.: Existence of weak solution for volume preserving mean curvature flow via phase field method, pp. 1-16 (2015). arXiv:1511.01687 [math.AP]
[26] Ward, MJ, Metastable bubble solutions for the Allen-Cahn equation with mass conservation, SIAM J. Appl. Math., 56, 1247-1279, (1996) · Zbl 0870.35011 · doi:10.1137/S0036139995282918
[27] Zhai, S.; Weng, Z.; Feng, X., Investigations on several numerical methods for the non-local Allen-Cahn equation, Int. J. Heat Mass Transfer, 87, 111-118, (2015) · doi:10.1016/j.ijheatmasstransfer.2015.03.071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.