×

High-order and mass conservative methods for the conservative Allen-Cahn equation. (English) Zbl 1359.65216

Summary: The conservative Allen-Cahn (AC) equation has been studied analytically and numerically. Our mathematical analysis and numerical experiment, however, show that previous numerical methods are not second-order accurate in time and/or do not conserve the initial mass. The aim of this paper is to propose high-order and mass conservative methods for solving the conservative AC equation. In the methods, we discretize the conservative AC equation by using a Fourier spectral method in space and first-, second-, and third-order implicit-explicit Runge-Kutta schemes in time. We show that the methods inherit the mass conservation. Numerical experiments are presented demonstrating the accuracy and efficiency of proposed methods.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
80A22 Stefan problems, phase changes, etc.
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
Full Text: DOI

References:

[1] Allen, S. M.; Cahn, J. W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27, 1085-1095 (1979)
[2] Beneš, M.; Chalupecký, V.; Mikula, K., Geometrical image segmentation by the Allen-Cahn equation, Appl. Numer. Math., 51, 187-205 (2004) · Zbl 1055.94502
[3] Dobrosotskaya, J. A.; Bertozzi, A. L., A wavelet-Laplace variational technique for image deconvolution and inpainting, IEEE Trans. Image Process., 17, 657-663 (2008)
[4] Li, Y.; Kim, J., Multiphase image segmentation using a phase-field model, Comput. Math. Appl., 62, 737-745 (2011) · Zbl 1228.94009
[5] Evans, L. C.; Soner, H. M.; Souganidis, P. E., Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45, 1097-1123 (1992) · Zbl 0801.35045
[6] Ilmanen, T., Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Differential Geom., 38, 417-461 (1993) · Zbl 0784.53035
[7] Katsoulakis, M.; Kossioris, G. T.; Reitich, F., Generalized motion by mean curvature with Neumann conditions and the Allen-Cahn model for phase transitions, J. Geom. Anal., 5, 255-279 (1995) · Zbl 0827.35003
[8] Beneš, M.; Mikula, K., Simulation of anisotropic motion by mean curvature-comparison of phase field and sharp interface approaches, Acta Math. Univ. Comenian., 67, 17-42 (1998) · Zbl 0963.80004
[9] Bao, W., Approximation and comparison for motion by mean curvature with intersection points, Comput. Math. Appl., 46, 1211-1228 (2003) · Zbl 1049.65012
[10] Feng, X.; Prohl, A., Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows, Numer. Math., 94, 33-65 (2003) · Zbl 1029.65093
[11] Ohtsuka, T., Motion of interfaces by an Allen-Cahn type equation with multiple-well potentials, Asymptot. Anal., 56, 87-123 (2008) · Zbl 1140.35338
[12] Yang, X.; Feng, J. J.; Liu, C.; Shen, J., Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method, J. Comput. Phys., 218, 417-428 (2006) · Zbl 1158.76319
[13] Wheeler, A. A.; Boettinger, W. J.; McFadden, G. B., Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev. A, 45, 7424-7439 (1992)
[14] Li, Y.; Lee, H. G.; Kim, J., A fast, robust, and accurate operator splitting method for phase-field simulations of crystal growth, J. Cryst. Growth, 321, 176-182 (2011)
[15] Chen, L.-Q.; Yang, W., Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics, Phys. Rev. B, 50, 15752-15756 (1994)
[16] Steinbach, I.; Pezzolla, F.; Nestler, B.; Seeßelberg, M.; Prieler, R.; Schmitz, G. J.; Rezende, J. L.L., A phase field concept for multiphase systems, Physica D, 94, 135-147 (1996) · Zbl 0885.35148
[17] Fan, D.; Geng, C.; Chen, L.-Q., Computer simulation of topological evolution in 2-D grain growth using a continuum diffuse-interface field model, Acta Mater., 45, 1115-1126 (1997)
[18] Lusk, M. T., A phase-field paradigm for grain growth and recrystallization, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 455, 677-700 (1999) · Zbl 0933.74016
[19] Kobayashi, R.; Warren, J. A.; Carter, W. C., A continuum model of grain boundaries, Physica D, 140, 141-150 (2000) · Zbl 0956.35123
[20] Rubinstein, J.; Sternberg, P., Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl. Math., 48, 249-264 (1992) · Zbl 0763.35051
[21] Ward, M. J., Metastable bubble solutions for the Allen-Cahn equation with mass conservation, SIAM J. Appl. Math., 56, 1247-1279 (1996) · Zbl 0870.35011
[22] Bronsard, L.; Stoth, B., Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation, SIAM J. Math. Anal., 28, 769-807 (1997) · Zbl 0874.35009
[23] Stafford, D.; Ward, M. J.; Wetton, B., The dynamics of drops and attached interfaces for the constrained Allen-Cahn equation, European J. Appl. Math., 12, 1-24 (2001) · Zbl 0988.76095
[24] Conti, M.; Meerson, B.; Peleg, A.; Sasorov, P. V., Phase ordering with a global conservation law: Ostwald ripening and coalescence, Phys. Rev. E, 65, Article 046117 pp. (2002)
[25] Zhang, Z.; Tang, H., An adaptive phase field method for the mixture of two incompressible fluids, Comput. & Fluids, 36, 1307-1318 (2007) · Zbl 1194.76271
[26] Shen, J.; Yang, X., An efficient moving mesh spectral method for the phase-field model of two-phase flows, J. Comput. Phys., 228, 2978-2992 (2009) · Zbl 1159.76032
[27] Chen, X.; Hilhorst, D.; Logak, E., Mass conserving Allen-Cahn equation and volume preserving mean curvature flow, Interface Free Bound., 12, 527-549 (2010) · Zbl 1219.35018
[28] Shen, J.; Yang, X., A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities, SIAM J. Sci. Comput., 32, 1159-1179 (2010) · Zbl 1410.76464
[29] Beneš, M.; Yazaki, S.; Kimura, M., Computational studies of non-local anisotropic Allen-Cahn equation, Math. Bohem., 136, 429-437 (2011) · Zbl 1249.35153
[30] Brassel, M.; Bretin, E., A modified phase field approximation for mean curvature flow with conservation of the volume, Math. Methods Appl. Sci., 34, 1157-1180 (2011) · Zbl 1235.49082
[31] Kim, J.; Lee, S.; Choi, Y., A conservative Allen-Cahn equation with a space-time dependent Lagrange multiplier, Internat. J. Engrg. Sci., 84, 11-17 (2014) · Zbl 1425.65089
[32] Zhai, S.; Weng, Z.; Feng, X., Investigations on several numerical methods for the non-local Allen-Cahn equation, Int. J. Heat Mass Transfer, 87, 111-118 (2015)
[33] Zhai, S.; Weng, Z.; Feng, X., Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen-Cahn model, Appl. Math. Model., 40, 1315-1324 (2016) · Zbl 1446.65135
[34] Ascher, U. M.; Ruuth, S. J.; Spiteri, R. J., Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., 25, 151-167 (1997) · Zbl 0896.65061
[35] Li, Y.; Lee, H. G.; Jeong, D.; Kim, J., An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation, Comput. Math. Appl., 60, 1591-1606 (2010) · Zbl 1202.65112
[36] Lee, H. G.; Lee, J.-Y., A semi-analytical Fourier spectral method for the Allen-Cahn equation, Comput. Math. Appl., 68, 174-184 (2014) · Zbl 1369.65128
[37] Goldman, D.; Kaper, T. J., \(N\) th-order operator splitting schemes and nonreversible systems, SIAM J. Numer. Anal., 33, 349-367 (1996) · Zbl 0849.65070
[38] Maeyama, S.; Ishizawa, A.; Watanabe, T.-H.; Nakajima, N.; Tsuji-Iio, S.; Tsutsui, H., A hybrid method of semi-Lagrangian and additive semi-implicit Runge-Kutta schemes for gyrokinetic Vlasov simulations, Comput. Phys. Comm., 183, 1986-1992 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.