×

Global solutions to the volume-preserving mean-curvature flow. (English) Zbl 1336.53082

Summary: In this paper, we construct global distributional solutions to the volume-preserving mean-curvature flow using a variant of the time-discrete gradient flow approach proposed independently by F. Almgren et al. [SIAM J. Control Optim. 31, No. 2, 387–438 (1993; Zbl 0783.35002)] and S. Luckhaus and T. Sturzenhecker [Calc. Var. Partial Differ. Equ. 3, No. 2, 253–271 (1995; Zbl 0821.35003)].

MSC:

53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
58E12 Variational problems concerning minimal surfaces (problems in two independent variables)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Alfaro, M., Alifrangis, P.: Convergence of a mass conserving Allen-Cahn equation whose lagrange multiplier is nonlocal and local. Interfaces Free Bound 16, 243-268 (2014) · Zbl 1304.35729 · doi:10.4171/IFB/319
[2] Almgren, F., Taylor, J.E., Wang, L.: Curvature-driven flows: a variational approach. SIAM J. Control Optim. 31(2), 387-438 (1993) · Zbl 0783.35002 · doi:10.1137/0331020
[3] Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000) · Zbl 0957.49001
[4] Andrews, B.: Volume-preserving anisotropic mean curvature flow. Indiana Univ. Math. J. 50(2), 783-827 (2001) · Zbl 1047.53037 · doi:10.1512/iumj.2001.50.1853
[5] Bellettini, G., Caselles, V., Chambolle, A., Novaga, M.: The volume preserving crystalline mean curvature flow of convex sets in \[\mathbb{R}^N\] RN. J. Math. Pure Appl. 92(5), 499-527 (2009) · Zbl 1178.53066 · doi:10.1016/j.matpur.2009.05.016
[6] Bronsard, L., Stoth, B.: Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation. SIAM J. Math. Anal. 28(4), 769-807 (1997) · Zbl 0874.35009 · doi:10.1137/S0036141094279279
[7] Cabezas-Rivas, E., Miquel, V.: Volume preserving mean curvature flow in the hyperbolic space. Indiana Univ. Math. J. 56(5), 2061-2086 (2007) · Zbl 1130.53045 · doi:10.1512/iumj.2007.56.3060
[8] Cabezas-Rivas, E., Miquel, V.: Volume preserving mean curvature flow of revolution hypersurfaces between two equidistants. Calc. Var. Partial Differ. Equ. 43(1-2), 185-210 (2012) · Zbl 1247.53080 · doi:10.1007/s00526-011-0408-9
[9] Caginalp, G.: Stefan and hele-shaw type models as asymptotic limits of the phase-field equations. Phys. Rev. A 39(11), 5887-5896 (1989) · Zbl 1027.80505 · doi:10.1103/PhysRevA.39.5887
[10] Capuzzo Dolcetta, I., Finzi Vita, S., March, R.: Area-preserving curve-shortening flows: from phase separation to image processing. Interface Free Bound 4(4), 325-343 (2002) · Zbl 1021.35129 · doi:10.4171/IFB/64
[11] Carter, W., Roosen, A., Cahn, J., Taylor, J.: Shape evolution by surface diffusion and surface attachment limited kinetics on completely faceted surfaces. Acta Metall. Mater. 43(12), 4309-4323 (1995) · doi:10.1016/0956-7151(95)00134-H
[12] Chen, X., Hilhorst, D., Logak, E.: Mass conserving Allen-Cahn equation and volume preserving mean curvature flow. Interface Free Bound 12(4), 527-549 (2010) · Zbl 1219.35018 · doi:10.4171/IFB/244
[13] Dai, S., Niethammer, B., Pego, R.L.: Crossover in coarsening rates for the monopole approximation of the Mullins-Sekerka model with kinetic drag. In: Proceedings of the Royal Society of Edinburgh: Section A Mathematics vol. 140(03), pp. 553-571 (2010) · Zbl 1196.82081
[14] De Giorgi, E.: Nuovi teoremi relativi alle misure \[(r-1)\](r-1)-dimensionali in uno spazio ad \[r\] r dimensioni. Ricerche Mat 4, 95-113 (1955) · Zbl 0066.29903
[15] Escher, J., Simonett, G.: The volume preserving mean curvature flow near spheres. Proc. Am. Math. Soc. 126(9), 2789-2796 (1998) · Zbl 0909.53043 · doi:10.1090/S0002-9939-98-04727-3
[16] Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992) · Zbl 0804.28001
[17] Gage, M.: On an area-preserving evolution equation for plane curves. In: Iannelli, M., Nagel, R., Piazzera, S. (eds), Nonlinear Problems in Geometry (Mobile, Ala., 1985), volume 51 of Contemp. Math. pp 52-62. Am. Math. Soc. (1986) · Zbl 0621.53007
[18] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics (Reprint of the 1998 edition). Springer, Berlin (2001) · Zbl 1042.35002
[19] Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, 80th edn. Birkhäuser Verlag, Basel (1984) · Zbl 0545.49018 · doi:10.1007/978-1-4684-9486-0
[20] Goldman, M., Novaga, M.: Volume-constrained minimizers for the prescribed curvature problem in periodic media. Calc. Var. Partial Differ. Equ. 44(3-4), 297-318 (2012) · Zbl 1241.49027 · doi:10.1007/s00526-011-0435-6
[21] Gurtin, M.E.: Thermomechanics of Evolving Phase Boundaries in the Plane. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1993) · Zbl 0787.73004
[22] Huisken, G.: The volume preserving mean curvature flow. J. Rein. Angew. Math. 382, 35-48 (1987) · Zbl 0621.53007
[23] Hutchinson, J.E.: Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana Univ. Math. J. 35(1), 45-71 (1986) · Zbl 0561.53008 · doi:10.1512/iumj.1986.35.35003
[24] Li, H.: The volume-preserving mean curvature flow in Euclidean space. Pac. J. Math. 243(2), 331-355 (2009) · Zbl 1182.53061 · doi:10.2140/pjm.2009.243.331
[25] Lifshitz, I.M., Slyozov, V.V.: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19(1-2), 35-50 (1961) · doi:10.1016/0022-3697(61)90054-3
[26] Luckhaus, S., Sturzenhecker, T.: Implicit time discretization for the mean curvature flow equation. Calc. Var. Partial Differ. Equ. 3(2), 253-271 (1995) · Zbl 0821.35003 · doi:10.1007/BF01205007
[27] Maggi, F.: Sets of finite perimeter and geometric variational problems, volume 135 of Cambridge Studies in Advanced Mathematics. An introduction to geometric measure theory. Cambridge University Press, Cambridge (2012) · Zbl 1255.49074
[28] Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. (JEMS) 8(1), 1-48 (2006) · Zbl 1101.58005 · doi:10.4171/JEMS/37
[29] Mugnai, L., Seis, C.: On the coarsening rates for attachment-limited kinetics. SIAM J. Math. Anal. 45(1), 324-344 (2013) · Zbl 1278.35016 · doi:10.1137/120865197
[30] Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A pde-based fast local level set method. J. Comput. Phys. 155(2), 410-438 (1999) · Zbl 0964.76069 · doi:10.1006/jcph.1999.6345
[31] Ruuth, S.J., Wetton, B.T.R.: A simple scheme for volume-preserving motion by mean curvature. J. Sci. Comput. 19(1-3), 373-384 (2003). Special issue in honor of the sixtieth birthday of Stanley Osher · Zbl 1035.65097 · doi:10.1023/A:1025368328471
[32] Tarshis, L.A., Walker, J.L., Gigliotti, M.F.X.: Solidification. Annu. Rev. Mater. Sci. 2(1), 181-216 (1972) · doi:10.1146/annurev.ms.02.080172.001145
[33] Wagner, C.: Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 65(7-8), 581-591 (1961)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.