×

Modified mean curvatue flow with conic obstacle. (Flot de courbure moyenne modifiée avec obstacle conique.) (French) Zbl 1063.35096

Summary: A rotationally symmetric, compact, oriented, connected, uniformly convex hypersurface \(M_0\) of \(\mathbb R^{n+1}\), with boundary \(\partial M_0\) in a rotationally symmetric cone \(S\), is evolving under volume-preserving mean curvature flow. Then for \(n\geqslant 2\), we obtain gradient and curvature estimates, leading to long-time existence of the flow, and convergence to a part of a round sphere.

MSC:

35K65 Degenerate parabolic equations
53B20 Local Riemannian geometry
53B50 Applications of local differential geometry to the sciences
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
35K55 Nonlinear parabolic equations
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
Full Text: DOI

References:

[1] Athanassenas, M., Volume-preserving mean curvature flow of rotationally symmetric surfaces, Comment. Math. Helv., 52-66 (1997) · Zbl 0873.35033
[2] G. Bellettini, G. Fusco, The dynamic of \(VHh\); G. Bellettini, G. Fusco, The dynamic of \(VHh\)
[3] Bronsard, L.; Stoth, B., Volume-preserving mean curvature flow as limit of a nonlocal Guinzburg-Landau equation, SIAM J. Math. Anal., 28, 4, 769-807 (1997) · Zbl 0874.35009
[4] Escher, J.; Simonett, G., The volume-preserving mean curvature flow near spheres, Proc. Amer. Math. Soc., 126, 9, 2789-2796 (1998) · Zbl 0909.53043
[5] Gage, M., On an Area Preserving Evolution Equation for Planes Curves, Contemp. Math., vol. 51 (1986), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0608.53002
[6] Hamilton, R., Three-manifolds with positive Ricci curvature, J. Differential Geom., 17, 255-306 (1982) · Zbl 0504.53034
[7] Hamilton, R., The inverse function theorem of Nash and Moser (new version), Amer. Math. Soc. Bull. New Ser., 7, 1, 65-222 (1982) · Zbl 0499.58003
[8] Huisken, G., The volume-preserving mean curvature flow, J. Reine Angew. Math., 382, 35-48 (1987) · Zbl 0621.53007
[9] Huisken, G.; Yau, S.-T, Definition of the center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature, Invent. Math., 124, 281-311 (1996) · Zbl 0858.53071
[10] Ladyzhenskaya, O.; Solonnikov, V.; Ural’ceva, N., Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23 (1968), American Mathematical Society: American Mathematical Society RI · Zbl 0174.15403
[11] Mullins, W.; Sekerka, R., Morphological stability of a particle growing by diffusion and heat flow, J. Appl. Phys., 34, 323-329 (1963)
[12] Quadjovie, H., Convexités et flot de courbure moyenne modifiée avec bords presqu’ombilics, J. Rech. Sci. Univ. Bénin (Togo), 4, 2, 223-228 (2000)
[13] A. Stahl, Über den mittleren Krümmungsfluß mit Neumannrandwerten auf Hyperflächen, Thèse de doctorat (Superviseur : Gerhard Huisken, Tübingen : Décembre 1994); A. Stahl, Über den mittleren Krümmungsfluß mit Neumannrandwerten auf Hyperflächen, Thèse de doctorat (Superviseur : Gerhard Huisken, Tübingen : Décembre 1994) · Zbl 0869.53002
[14] Stoth, B., Convergence of the Cahn-Hilliard equation to the Mullins-Sekerka problem in spherical symmetry, J. Differential Equations, 125, 154-183 (1996) · Zbl 0851.35011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.