×

Explicit third-order unconditionally structure-preserving schemes for conservative Allen-Cahn equations. (English) Zbl 07435301

J. Sci. Comput. 90, No. 1, Paper No. 8, 29 p. (2022); correction ibid. 91, No. 1, Paper No. 13, 2 p. (2022).
Summary: Compared with the well-known classical Allen-Cahn equation, the modified Allen-Cahn equation, which is equipped with a nonlocal Lagrange multiplier or a local-nonlocal Lagrange multiplier, enforces the mass conservation for modeling phase transitions. In this work, a class of up to third-order explicit structure-preserving schemes is proposed for solving these two modified conservative Allen-Cahn equations. Based on second-order finite-difference space discretization, we investigate the newly developed improved stabilized integrating factor Runge-Kutta (isIFRK) schemes for conservative Allen-Cahn equations. We prove that the original stabilized integrating factor Runge-Kutta schemes fail to preserve the mass conservation law when the stabilizing constant \(\kappa > 0\) and the initial mass does not equal zero, while isIFRK schemes not only preserve the maximum principle unconditionally, but also conserve the mass to machine accuracy without any restriction on the time-step size. Convergence of the proposed schemes are also presented. At last, a series of numerical experiments validate that each reformulation of the conservative Allen-Cahn equations has it own advantage, and isIFRK schemes can reach the expected high-order accuracy, conserve the mass, and preserve the maximum principle unconditionally.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Kxx Parabolic equations and parabolic systems
65Lxx Numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] Alfaro, M.; Alifrangis, P., Convergence of a mass conserving Allen-Cahn equation whose Lagrange multiplier is nonlocal and local, Interfaces Free Bound., 16, 2, 243-268 (2014) · Zbl 1304.35729
[2] Allen, SM; Cahn, JW, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27, 6, 1085-1095 (1979)
[3] Bonaventura, L.; Della Rocca, A., Unconditionally strong stability preserving extensions of the TR-BDF2 method, J. Sci. Comput., 70, 2, 859-895 (2017) · Zbl 1361.65046
[4] Brassel, M.; Bretin, E., A modified phase field approximation for mean curvature flow with conservation of the volume, Math. Methods Appl. Sci., 34, 10, 1157-1180 (2011) · Zbl 1235.49082
[5] Bronsard, L.; Stoth, B., Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation, SIAM J. Math. Anal., 28, 4, 769-807 (1997) · Zbl 0874.35009
[6] Chen, H.; Sun, HW, A dimensional splitting exponential time differencing scheme for multidimensional fractional Allen-Cahn equations, J. Sci. Comput., 87, 1, 1-25 (2021) · Zbl 1466.65099
[7] Chen, X.; Hilhorst, D.; Logak, E., Mass conserving Allen-Cahn equation and volume preserving mean curvature flow, Interfaces Free Bound., 12, 4, 527-549 (2011) · Zbl 1219.35018
[8] Cheng, Q.: The generalized scalar auxiliary variable approach (G-SAV) for gradient flows. arXiv preprint arXiv:2002.00236 (2020)
[9] Cheng, Q.; Shen, J.; Yang, X., Highly efficient and accurate numerical schemes for the epitaxial thin film growth models by using the SAV approach, J. Sci. Comput., 78, 3, 1467-1487 (2019) · Zbl 1444.76020
[10] Choi, JW; Lee, HG; Jeong, D.; Kim, J., An unconditionally gradient stable numerical method for solving the Allen-Cahn equation, Physica A, 388, 9, 1791-1803 (2009)
[11] Du, Q.; Ju, L.; Li, X.; Qiao, Z., Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation, SIAM J. Numer. Anal., 57, 2, 875-898 (2019) · Zbl 1419.65018
[12] Du, Q.; Ju, L.; Li, X.; Qiao, Z., Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes, SIAM Rev., 63, 2, 317-359 (2021) · Zbl 1465.35081
[13] Eyre, D.J.: An unconditionally stable one-step scheme for gradient systems. Unpublished article, pp. 1-15 (1998)
[14] Feng, J., Zhou, Y., Hou, T.: A maximum-principle preserving and unconditionally energy-stable linear second-order finite difference scheme for Allen-Cahn equations. Appl. Math. Lett. 107179 (2021) · Zbl 1524.65336
[15] Feng, X.; Prohl, A., Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows, Numer. Math., 94, 1, 33-65 (2003) · Zbl 1029.65093
[16] Gong, Y.; Zhao, J.; Wang, Q., Arbitrarily high-order unconditionally energy stable sav schemes for gradient flow models, Comput. Phys. Commun., 249, 107033 (2020) · Zbl 07678495
[17] Gottlieb, S.; Shu, CW; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 1, 89-112 (2001) · Zbl 0967.65098
[18] He, D.; Pan, K.; Hu, H., A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen-Cahn equation, Appl. Numer. Math., 151, 44-63 (2020) · Zbl 1434.65117
[19] Hou, T.; Leng, H., Numerical analysis of a stabilized Crank-Nicolson/Adams-Bashforth finite difference scheme for Allen-Cahn equations, Appl. Math. Lett., 102, 106150 (2020) · Zbl 1524.65348
[20] Hou, T.; Tang, T.; Yang, J., Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations, J. Sci. Comput., 72, 3, 1214-1231 (2017) · Zbl 1379.65063
[21] Hou, T.; Xiu, D.; Jiang, W., A new second-order maximum-principle preserving finite difference scheme for Allen-Cahn equations with periodic boundary conditions, Appl. Math. Lett., 104, 106265 (2020) · Zbl 1437.65098
[22] Huang, J.; Shu, CW, Bound-preserving modified exponential Runge-Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms, J. Comput. Phys., 361, 111-135 (2018) · Zbl 1422.65259
[23] Jeong, D.; Kim, J., Conservative Allen-Cahn-Navier-Stokes system for incompressible two-phase fluid flows, Comput. Fluids, 156, 239-246 (2017) · Zbl 1390.76577
[24] Jiang, K., Ju, L., Li, J., Li, X.: Unconditionally stable exponential time differencing schemes for the mass-conserving Allen-Cahn equation with nonlocal and local effects. Numer. Methods Partial Differ. Equ., 1-22
[25] Ju, L., Li, X., Qiao, Z., Yang, J.: Maximum bound principle preserving integrating factor Runge-Kutta methods for semilinear parabolic equations. J. Comput. Phys., 110405 (2021) · Zbl 1537.65101
[26] Kim, J.; Lee, S.; Choi, Y., A conservative Allen-Cahn equation with a space-time dependent Lagrange multiplier, Int. J. Eng. Sci., 84, 11-17 (2014) · Zbl 1425.65089
[27] Kraaijevanger, JFBM, Contractivity of Runge-Kutta methods, BIT Numer. Math., 31, 3, 482-528 (1991) · Zbl 0763.65059
[28] Li, B.; Yang, J.; Zhou, Z., Arbitrarily high-order exponential cut-off methods for preserving maximum principle of parabolic equations, SIAM J. Sci. Comput., 42, 6, A3957-A3978 (2020) · Zbl 1456.65117
[29] Li, J.; Ju, L.; Cai, Y.; Feng, X., Unconditionally maximum bound principle preserving linear schemes for the conservative Allen-Cahn equation with nonlocal constraint, J. Sci. Comput., 87, 3, 1-32 (2021) · Zbl 1476.65178
[30] Li, J.; Li, X.; Ju, L.; Feng, X., Stabilized integrating factor Runge-Kutta method and unconditional preservation of maximum bound principle, SIAM J. Sci. Comput., 43, 3, A1780-A1802 (2021) · Zbl 1486.65146
[31] Li, Y.; Kim, J., An unconditionally stable hybrid method for image segmentation, Appl. Numer. Math., 82, 32-43 (2014) · Zbl 1291.65187
[32] Liao, HL; Tang, T.; Zhou, T., A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations, J. Comput. Phys., 414, 109473 (2020) · Zbl 1440.65116
[33] Liu, C.; Shen, J., A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Physica D, 179, 3-4, 211-228 (2003) · Zbl 1092.76069
[34] Okumura, M., A stable and structure-preserving scheme for a non-local Allen-Cahn equation, Jpn. J. Ind. Appl. Math., 35, 3, 1245-1281 (2018) · Zbl 1403.65043
[35] Rubinstein, J.; Sternberg, P., Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl. Math., 48, 3, 249-264 (1992) · Zbl 0763.35051
[36] Shen, J.; Tang, T.; Yang, J., On the maximum principle preserving schemes for the generalized Allen-Cahn equation, Commun. Math. Sci., 14, 6, 1517-1534 (2016) · Zbl 1361.65059
[37] Shen, J.; Wang, C.; Wang, X.; Wise, SM, Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy, SIAM J. Numer. Anal., 50, 1, 105-125 (2012) · Zbl 1247.65088
[38] Shen, J.; Xu, J., Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows, SIAM J. Numer. Anal., 56, 5, 2895-2912 (2018) · Zbl 1403.65047
[39] Shen, J.; Xu, J.; Yang, J., The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 353, 407-416 (2018) · Zbl 1380.65181
[40] Shen, J.; Yang, X., Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst, 28, 4, 1669-1691 (2010) · Zbl 1201.65184
[41] Shin, J.; Lee, HG; Lee, JY, Unconditionally stable methods for gradient flow using convex splitting Runge-Kutta scheme, J. Comput. Phys., 347, 367-381 (2017) · Zbl 1380.65124
[42] Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion (2003) · Zbl 1035.65098
[43] Takasao, K., Existence of weak solution for volume preserving mean curvature flow via phase field method, Hokkaido Univ. Preprint Ser. Math., 1080, 1-16 (2015)
[44] Tan, Z.; Zhang, C., The discrete maximum principle and energy stability of a new second-order difference scheme for Allen-Cahn equations, Appl. Numer. Math., 166, 227-237 (2021) · Zbl 1469.35200
[45] Tang, T.; Yang, J., Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle, J. Comput. Math., 34, 5, 471-481 (2016) · Zbl 1374.65154
[46] van der Waals, JD, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, J. Stat. Phys., 20, 2, 200-244 (1979) · Zbl 1245.82006
[47] Wang, C.; Wise, SM, An energy stable and convergent finite-difference scheme for the modified phase field crystal equation, SIAM J. Numer. Anal., 49, 3, 945-969 (2011) · Zbl 1230.82005
[48] Xiao, X., He, R., Feng, X.: Unconditionally maximum principle preserving finite element schemes for the surface Allen-Cahn type equations. Numerical Methods for Partial Differential Equations pp. 1-21 (2019)
[49] Xu, C.; Tang, T., Stability analysis of large time-stepping methods for epitaxial growth models, SIAM J. Numer. Anal., 44, 4, 1759-1779 (2006) · Zbl 1127.65069
[50] Xu, J.; Li, Y.; Wu, S.; Bousquet, A., On the stability and accuracy of partially and fully implicit schemes for phase field modeling, Comput. Methods Appl. Mech. Eng., 345, 826-853 (2019) · Zbl 1440.80003
[51] Yang, J., Yuan, Z., Zhou, Z.: Arbitrarily High-order Maximum Bound Preserving Schemes with Cut-off Postprocessing for Allen-Cahn Equations. arXiv preprint arXiv:2102.13271 (2021)
[52] Yang, X., Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends, J. Comput. Phys., 327, 294-316 (2016) · Zbl 1373.82106
[53] Yang, X.; Feng, JJ; Liu, C.; Shen, J., Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method, J. Comput. Phys., 218, 1, 417-428 (2006) · Zbl 1158.76319
[54] Yang, Z.; Dong, S., A roadmap for discretely energy-stable schemes for dissipative systems based on a generalized auxiliary variable with guaranteed positivity, J. Comput. Phys., 404, 109121 (2020) · Zbl 1453.65276
[55] Yue, P.; Zhou, C.; Feng, JJ, Spontaneous shrinkage of drops and mass conservation in phase-field simulations, J. Comput. Phys., 223, 1, 1-9 (2007) · Zbl 1115.76077
[56] Zhai, S.; Weng, Z.; Feng, X., Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen-Cahn model, Appl. Math. Model., 40, 2, 1315-1324 (2016) · Zbl 1446.65135
[57] Zhang, H., Yan, J., Qian, X., Chen, X., Song, S.: Third-order accurate and unconditionally maximum-principle-preserving explicit schemes for the Allen-Cahn equation. submitted (2021)
[58] Zhang, H., Yan, J., Qian, X., Gu, X., Song, S.: On the maximum principle preserving and energy stability of high-order implicit-explicit Runge-Kutta schemes for the space-fractional Allen-Cahn equation. Numerical Algorithms, accepted (2021) · Zbl 1489.65105
[59] Zhang, H.; Yan, J.; Qian, X.; Song, S., Numerical analysis and applications of explicit high order maximum principle preserving integrating factor Runge-Kutta schemes for Allen-Cahn equation, Appl. Numer. Math., 161, 372-390 (2021) · Zbl 07310823
[60] Zhang, J.; Chen, C.; Yang, X.; Chu, Y.; Xia, Z., Efficient, non-iterative, and second-order accurate numerical algorithms for the anisotropic Allen-Cahn equation with precise nonlocal mass conservation, J. Comput. Appl. Math., 363, 444-463 (2020) · Zbl 1422.65198
[61] Zhang, J.; Yang, X., Numerical approximations for a new L2-gradient flow based Phase field crystal model with precise nonlocal mass conservation, Comput. Phys. Commun., 243, 51-67 (2019) · Zbl 07674815
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.