×

Arbitrarily high-order accurate and energy-stable schemes for solving the conservative Allen-Cahn equation. (English) Zbl 1533.65194

Summary: In this paper, three high-order accurate and unconditionally energy-stable methods are proposed for solving the conservative Allen-Cahn equation with a space-time dependent Lagrange multiplier. One is developed based on an energy linearization Runge-Kutta (EL-RK) method which combines an energy linearization technique with a specific class of RK schemes, the other two are based on the Hamiltonian boundary value method (HBVM) including a Gauss collocation method, which is the particular instance of HBVM, and a general class of cases. The system is first discretized in time by these methods in which the property of unconditional energy stability is proved. Then the Fourier pseudo-spectral method is employed in space along with the proofs of mass conservation. To show the stability and validity of the obtained schemes, a number of 2D and 3D numerical simulations are presented for accurately calculating geometric features of the system. In addition, our numerical results are compared with other known structure-preserving methods in terms of numerical accuracy and conservation properties.
{© 2022 Wiley Periodicals LLC.}

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65D32 Numerical quadrature and cubature formulas
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
Full Text: DOI

References:

[1] S. M.Allen and J. W.Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall.27 (1979), 1085-1095.
[2] L. Q.Chen, Phase‐field models for microstructure evolution, Annu. Rev. Mater. Res.32 (2002), 113-140.
[3] X. F.Yang, Efficient linear, stabilized, second order time marching schemes for an anisotropic phase field dendritic crystal growth model, Comput. Method Appl. Mech. Eng.347 (2019), 316-339. · Zbl 1440.74483
[4] Y.Chen, S. M.Wise, V. B.Shenoy, and J. S.Lowengrub, A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane, Int. J. Numer. Method Biomed. Eng.30 (2014), 726-754.
[5] Y. U.Wang, Y. M.Jin, and A. G.Khachaturyan, Phase field microelasticity modeling of surface instability of heteroepitaxial thin films, Acta Mater.52 (2004), 81-92.
[6] C.Miehe, F.Welschinger, and M.Hofacker, Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations, Int. J. Numer. Meth. Eng.83 (2010), 1273-1311. · Zbl 1202.74014
[7] J.Rubinstein and P.Sternberg, Nonlocal reaction‐diffusion equations and nucleation, IMA J. Appl. Math.48 (1992), 249-264. · Zbl 0763.35051
[8] M.Brassel and E.Bretin, A modified phase field approximation for mean curvature flow with conservation of the volume, Math. Method Appl. Sci.34 (2011), 1157-1180. · Zbl 1235.49082
[9] M. J.Ward, Metastable bubble solutions for the Allen‐Cahn equation with mass conservation, SIAM J. Math. Anal.56 (1996), 1237-1279. · Zbl 0870.35011
[10] L.Bronsard and B.Stoth, Volume‐preserving mean curvature flow as a limit of a nonlocal Ginzburg‐Landau equation, SIAM J. Math. Anal.28 (1997), 769-807. · Zbl 0874.35009
[11] N. D.Alikakos, X. F.Chen, and G.Fusco, Motion of a droplet by surface tension along the boundary, Calc. Var. Partial Differ Equ.11 (2000), 233-305. · Zbl 0994.35052
[12] D.Stafford, M. J.Ward, and B.Wetton, The dynamics of drops and attached interfaces for the constrained Allen‐Cahn equation, Eur. J. Appl. Math.2 (2001), 1-24. · Zbl 0988.76095
[13] M.Conti, B.Meerson, A.Peleg, and P. V.Sasorov, Phase ordering with a global conservation law: Ostwald ripening and coalescence, Phys. Rev. E65 (2002), 046117.
[14] J.Shen and X. F.Yang, An efficient moving mesh spectral method for the phase‐field model of two‐phase flows, J. Comput. Phys.228 (2009), 2978-2992. · Zbl 1159.76032
[15] X. F.Chen, D.Hilhorst, and E.Logak, Mass conserving Allen‐Cahn equation and volume preserving mean curvature flow, Interfaces Free Bound.12 (2010), 527-549. · Zbl 1219.35018
[16] M.Benes, S.Yazaki, and M.Kimura, Computational studies of non‐local anisotropic Allen‐Cahn equation, Math. Bohem.136 (2011), 429-437. · Zbl 1249.35153
[17] J.Kim, S.Lee, and Y.Choi, A conservative Allen-Cahn equation with a space-time dependent Lagrange multiplier, Int. J. Eng. Sci.84 (2014), 11-17. · Zbl 1425.65089
[18] O.Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Sci.6 (1996), 449-467. · Zbl 0866.58030
[19] R. I.McLachlan, G. R. W.Quispel, and N.Robidoux, Geometric integration using discrete gradients, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci.357 (1999), 1021-1045. · Zbl 0933.65143
[20] D.Furihata, Finite difference schemes for ∂u/∂t=(∂/∂x)α δG/δu that inherit energy conservation or dissipation property, J. Comput. Phys.156 (1999), 181-205. · Zbl 0945.65103
[21] T.Matsuo and D.Furihata, Dissipative or conservative finite‐difference schemes for complex‐valued nonlinear partial differential equations, J. Comput. Phys.171 (2001), 425-447. · Zbl 0993.65098
[22] G. R. W.Quispel and D. I.McLaren, A new class of energy‐preserving numerical integration methods, J. Phys. A‐Math. Theor.41 (2008), 045206. · Zbl 1132.65065
[23] H. C.Li, Y. S.Wang, and M. Z.Qin, A sixth order averaged vector field method, J. Comput. Math.34 (2016), 479-498. · Zbl 1374.65206
[24] C. L.Jiang, J. Q.Sun, H. C.Li, and Y. F.Wang, A fourth‐order AVF method for the numerical integration of sine‐Gordon equation, Appl. Math. Comput.313 (2017), 144-158. · Zbl 1426.37050
[25] L.Brugnano, F.Iavernaro, and D.Trigiante, Hamiltonian boundary value methods (energy preserving discrete line integral methods), J. Numer. Anal. Ind. Appl. Math.5 (2010), 17-37. · Zbl 1432.65182
[26] L.Brugnano, F.Iavernaro, and D.Trigiante, Analysis of Hamiltonian boundary value methods (HBVMs): A class of energy‐preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems, Commun. Nonlinear Sci. Numer. Simul.20 (2015), 650-667. · Zbl 1304.65262
[27] E.Hairer, Energy‐preserving variant of collocation methods, J. Numer. Anal. Ind. Appl. Math.5 (2010), 73-84. · Zbl 1432.65185
[28] Y.Miyatake, An energy‐preserving exponentially‐fitted continuous stage Runge‐Kutta method for Hamiltonian systems, BIT Numer. Math.54 (2014), 777-799. · Zbl 1304.65263
[29] J. Q.Xie, D.Liang, and Z. Y.Zhang, Two novel energy dissipative difference schemes for the strongly coupled nonlinear space fractional wave equations with damping, Appl. Numer. Math.157 (2020), 178-209. · Zbl 1446.65080
[30] L.Brugnano, G.Gurioli, and Y. J.Sun, Energy‐conserving Hamiltonian boundary value methods for the numerical solution of the Korteweg‐de Vries equation, J. Comput. Appl. Math.351 (2019), 117-135. · Zbl 1414.65024
[31] J. L.Yan and Z. Y.Zhang, New energy‐preserving schemes using Hamiltonian boundary value and Fourier pseudospectral methods for the numerical solution of the “good” Boussinesq equation, Comput. Phys. Commun.201 (2016), 33-42. · Zbl 1348.76107
[32] J. L.Yan, Z. Y.Zhang, T. J.Zhao, and D.Liang, High‐order energy‐preserving schemes for the improved Boussinesq equation, Numer. Methods Partial Differ. Equ.34 (2018), 1145-1165. · Zbl 1407.76109
[33] M. Z.Song, X.Qian, H.Zhang, and S. H.Song, Hamiltonian boundary value method for the nonlinear Schrödinger equation and the Korteweg‐de Vries equation, Adv. Appl. Math. Mech.9 (2017), 868-886. · Zbl 1488.65518
[34] L.Barletti, L.Brugnano, G.Frasca Caccia, and F.Iavernaro, Energy‐conserving methods for the nonlinear Schrödinger equation, Appl. Math. Comput.318 (2018), 3-18. · Zbl 1426.65202
[35] L.Brugnano, G.Frasca Caccia, and F.Iavernaro, Efficient implementation of Gauss collocation and Hamiltonian boundary value methods, Numer. Algorithms65 (2014), 633-650. · Zbl 1291.65357
[36] J.Kim and H. G.Lee, A new conservative vector‐valued Allen-Cahn equation and its fast numerical method, Comput. Phys. Commun.221 (2017), 102-108.
[37] S.Aihara, T.Takaki, and N.Takada, Multi‐phase‐field modeling using a conservative Allen-Cahn equation for multiphase flow, Comput. Fluids178 (2019), 141-151. · Zbl 1410.76322
[38] J.Zhang and X. F.Yang, Unconditionally energy stable large time stepping method for the L2‐gradient flow based ternary phase‐field model with precise nonlocal volume conservation, Comput. Method Appl. Mech. Eng.361 (2020), 112743. · Zbl 1442.65186
[39] J.Zhang, C. J.Chen, X. F.Yang, Y. C.Chu, and Z. Y.Xia, Efficient, non‐iterative, and second‐order accurate numerical algorithms for the anisotropic Allen-Cahn equation with precise nonlocal mass conservation, J. Comput. Appl. Math.363 (2020), 444-463. · Zbl 1422.65198
[40] H. G.Lee, High‐order and mass conservative methods for the conservative Allen‐Cahn equation, Comput. Math. Appl.72 (2016), 620-631. · Zbl 1359.65216
[41] D. F.Griffiths and D. J.Higham, Numerical methods for ordinary differential equations: initial value problems, Springer‐Verlag, London, 2010. · Zbl 1209.65070
[42] J.Shen, J.Xu, and J.Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys.353 (2018), 407-416. · Zbl 1380.65181
[43] Y. Z.Gong and J.Zhao, Energy‐stable Runge‐Kutta schemes for gradient flow models using the energy quadratization approach, Appl. Math. Lett.94 (2019), 224-231. · Zbl 1452.65122
[44] L.Brugnano, F.Iavernaro, and D.Trigiante, A simple framework for the derivation and analysis of effective one‐step methods for ODEs, Appl. Math. Comput.218 (2012), 8475-8485. · Zbl 1245.65086
[45] L.Brugnano, G.Frasca Caccia, and F.Iavernaro, Energy conservation issues in the numerical solution of the semilinear wave equation, Appl. Math. Comput.270 (2015), 842-870. · Zbl 1410.65477
[46] L.Brugnano and F.Iavernaro, Line integral methods for conservative problems, CRC Press, Boca Raton, FL, 2016. · Zbl 1335.65097
[47] G. J.Cooper, Stability of Runge‐Kutta methods for trajectory problems, IMA J. Numer. Anal.7 (1987), 1-13. · Zbl 0624.65057
[48] E.Hairer, C.Lubich, and G.Wanner, Geometric numerical integration: structure‐preserving algorithms for ordinary differential equations, 2nd ed., Springer‐Verlag, Berlin, 2006. · Zbl 1094.65125
[49] E.Hairer and G.Wanner, Solving ordinary differential equations II, Springer‐Verlag, Berlin, Germany, 1996. · Zbl 0859.65067
[50] E.Hairer, S. P.Nø rsett, and G.Wanner, Solving ordinary differential equations I, Springer, Berlin, Heidelberg, 1987. · Zbl 0638.65058
[51] B.Fornberg, A practical guide to pseudospectral methods, Cambridge University Press, New York, 1996. · Zbl 0844.65084
[52] J. B.Chen and M. Z.Qin, Multi‐symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation, Electron. Trans. Numer. Anal.12 (2001), 193-204. · Zbl 0980.65108
[53] Y. Z.Gong, J. X.Cai, and Y. S.Wang, Multi‐symplectic Fourier pseudospectral method for the Kawahara equation, Commun. Comput. Phys.16 (2014), 35-55. · Zbl 1388.65119
[54] H. C.Li and Y. S.Wang, A discrete line integral method of order two for the Lorentz force system, Appl. Math. Comput.291 (2016), 207-212. · Zbl 1410.81025
[55] K.Feng, Difference schemes for Hamiltonian formalism and symplectic geometry, J. Comput. Math.4 (1986), 279-289. · Zbl 0596.65090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.