×

The effective dynamics of the volume preserving mean curvature flow. (English) Zbl 1396.82014

Summary: We consider the dynamics of small closed submanifolds (‘bubbles’) under the volume preserving mean curvature flow. We construct a map from \((n+1)\)-dimensional Euclidean space into a given \((n+1)\)-dimensional Riemannian manifold which characterizes the existence, stability and dynamics of constant mean curvature submanifolds. This is done in terms of a reduced area function on the Euclidean space, which is given constructively and can be computed perturbatively. This allows us to derive adiabatic and effective dynamics of the bubbles. The results can be mapped by rescaling to the dynamics of fixed size bubbles in almost Euclidean Riemannian manifolds.

MSC:

82C24 Interface problems; diffusion-limited aggregation in time-dependent statistical mechanics
82C27 Dynamic critical phenomena in statistical mechanics
82C28 Dynamic renormalization group methods applied to problems in time-dependent statistical mechanics
53C40 Global submanifolds
Full Text: DOI

References:

[1] Alikakos, N; Freire, A, The normalized mean curvature flow for a small bubble in a Riemannian manifold, J. Differ. Geom., 64, 247-303, (2003) · Zbl 1070.53038 · doi:10.4310/jdg/1090426942
[2] Andrews, B, Volume-preserving anisotropic mean curvature flow, Indiana Univ. Math. J., 50, 783-827, (2001) · Zbl 1047.53037 · doi:10.1512/iumj.2001.50.1853
[3] Antonopoulou, DC; Karali, GD; Sigal, IM, Stability of spheres under volume preserving mean curvature flow, Dyn. PDE, 7, 327-344, (2010) · Zbl 1219.35132
[4] Athanassenas, M, Volume-preserving mean curvature flow of rotationally symmetric surfaces, Comment. Math. Helv., 72, 52-66, (1997) · Zbl 0873.35033 · doi:10.1007/PL00000366
[5] Athanassenas, M, Behaviour of singularities of the rotationally symmetric, volume-preserving mean curvature flow, Calc. Var. Partial Differ. Equ., 17, 1-16, (2003) · Zbl 1045.53045 · doi:10.1007/s00526-002-0098-4
[6] Athanassenas, M; Kandanaarachchi, S, Convergence of axially symmetric volume-preserving mean curvature flow, Pac. J. Math., 259, 41-54, (2012) · Zbl 1258.53067 · doi:10.2140/pjm.2012.259.41
[7] Bach, V; Fröhlich, J; Sigal, IM, Quantum electrodynamics of confined non-relativistic particles, Adv. Math., 137, 299-395, (1998) · Zbl 0923.47040 · doi:10.1006/aima.1998.1734
[8] Bach, V; Chen, T; Fröhlich, J; Sigal, IM, Smooth Feshbach map and operator-theoretic renormalization group methods, J. Funct. Anal., 203, 44-92, (2003) · Zbl 1060.47028 · doi:10.1016/S0022-1236(03)00057-0
[9] Barbosa, JL; Carmo, M; Eschenburg, J, Stability of hypersurfaces of constant mean curvature in Riemannian manifolds, Math. Z., 197, 123-138, (1988) · Zbl 0653.53045 · doi:10.1007/BF01161634
[10] Bourgain, J.: On a homogenization problem. Preprint (2017) · Zbl 1401.35356
[11] Bronsard, L; Stoth, B, Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation, SIAM J. Math. Anal., 28, 769-807, (1997) · Zbl 0874.35009 · doi:10.1137/S0036141094279279
[12] Chen, X., Hilhorst, D., Logak, E.: Mass conserved Allen-Cahn equation and volume preserving mean curvature flow (2009). arXiv:0902.3625v1 · Zbl 1219.35018
[13] Colding, TH; Minicozzi, WP, Minimal submanifolds, Bull. Lond. Math. Soc., 38, 353, (2006) · Zbl 1111.53007 · doi:10.1112/S0024609306018960
[14] Conlon, JG; Spencer, T, A strong central limit theorem for a class of random surfaces, Commun. Math. Phys., 325, 1-15, (2014) · Zbl 1291.82019 · doi:10.1007/s00220-013-1843-6
[15] Conlon, JG; Spencer, T, Strong convergence to the homogenized limit of elliptic equations with random coefficients, Trans. Am. Math. Soc., 366, 1257-1288, (2014) · Zbl 1283.81102 · doi:10.1090/S0002-9947-2013-05762-5
[16] Escher, J; Simonett, G, The volume preserving mean curvature flow near spheres, Proc. Am. Math. Soc., 126, 2789-2796, (1998) · Zbl 0909.53043 · doi:10.1090/S0002-9939-98-04727-3
[17] Gage, M.: On an area-preserving evolution equation for plane curves. In: De Turck, D.M. (ed.), Nonlinear Problems in Geometry. Contemporary Mathematics, vol. 51. AMS, Providence, pp. 51-62 (1986) · Zbl 0608.53002
[18] Gray, A, The volume of a small geodesic ball of a Riemannian manifold, Mich. Math. J., 20, 329-344, (1973) · Zbl 0279.58003
[19] Griesemer, M; Hasler, D, On the smooth Feshbach-Schur map, J. Funct. Anal., 254, 2329-2335, (2008) · Zbl 1138.81055 · doi:10.1016/j.jfa.2008.01.015
[20] Hartley, D, Motion by volume preserving mean curvature flow near cylinders, Commun. Anal. Geom., 21, 873-889, (2013) · Zbl 1312.53086 · doi:10.4310/CAG.2013.v21.n5.a1
[21] Huisken, G, The volume preserving mean curvature flow, J. Reine Angew. Math., 382, 35-48, (1987) · Zbl 0621.53007
[22] Huisken, G; Yau, ST, Definition of center of mass for isolated physical systems and unique foliation by stable spheres with constant mean curvature flow, Invent. Math., 124, 281-311, (1996) · Zbl 0858.53071 · doi:10.1007/s002220050054
[23] Matsen, MW, The standard Gaussian model for block copolymer melts, J. Phys. Condens. Matter, 14, r21-r47, (2002) · doi:10.1088/0953-8984/14/2/201
[24] Pacard, F; Xu, X, Constant mean curvature spheres in Riemannian manifolds, Manuscr. Math., 128, 275-295, (2009) · Zbl 1165.53038 · doi:10.1007/s00229-008-0230-7
[25] Pizzo, A.: Bose particles in a box I. A convergent expansion of the ground state of a three-modes Bogoliubov Hamiltonian. arXiv:1511.07022
[26] Pizzo, A.: Bose particles in a box II. A convergent expansion of the ground state of the Bogoliubov Hamiltonian in the mean field limiting regime. arXiv:1511.07025
[27] Pizzo, A.: Bose particles in a box III. A convergent expansion of the ground state of the Hamiltonian in the mean field limiting regime. arXiv:1511.07026
[28] Spohn, H, Interface motion in models with stochastic dynamics, J. Stat. Phys., 71, 1081, (1993) · Zbl 0935.82546 · doi:10.1007/BF01049962
[29] Ye, R, Foliation by constant mean curvature spheres, Pac. J. Math., 147, 381-396, (1991) · Zbl 0722.53022 · doi:10.2140/pjm.1991.147.381
[30] Willmore, T.J.: Riemannian Geometry. Oxford University Press, Oxford (1993) · Zbl 0797.53002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.