×

Existence and global attractivity of positive periodic solutions of an impulsive delay differential equation. (English) Zbl 1065.34068

Summary: Sufficient conditions are obtained for the existence and global attractivity of periodic positive solutions of an impulsive delay differential equation of the form \[ \begin{cases} x'(t)+\alpha(t)x(t)=p(t)f\biggl(x \bigl(t-\sigma(t) \bigr)\biggr),\quad\text{a.e. }t>0,\;t\neq t_k,\\ x(t_k^+) -x(t_k)=b_kx(t_k),\quad k=1,2,\dots\end{cases} \] Our theorems generalize some known results on special delay population models. It is shown that under appropriate linear periodic impulsive perturbations, the impulsive delay differential equation preserves the original periodicity and global attractivity properties of the nonimpulsive delay differential equation.

MSC:

34K13 Periodic solutions to functional-differential equations
34K20 Stability theory of functional-differential equations
34K45 Functional-differential equations with impulses
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Bainov DD, Ellis Horwood Series in Mathematics and its Applications, Ellis Horwood (1989)
[2] Ballinger G, Dynam. Contin. Discrete Impuls. Systems 5 pp 579– (1999)
[3] Gopalsamy K, Stability and Oscillation in Delay Differential Equations of Population Dynamics, Kluwer Academic (1992)
[4] DOI: 10.1006/jmaa.1999.6466 · Zbl 0936.34058 · doi:10.1006/jmaa.1999.6466
[5] Gopalsamy K, Houston J. Math. 17 pp 157– (1991)
[6] DOI: 10.1023/A:1005756425201 · Zbl 0872.34050 · doi:10.1023/A:1005756425201
[7] DOI: 10.1016/0022-247X(90)90369-Q · Zbl 0701.92021 · doi:10.1016/0022-247X(90)90369-Q
[8] DOI: 10.1016/0022-247X(89)90232-1 · Zbl 0687.34065 · doi:10.1016/0022-247X(89)90232-1
[9] DOI: 10.4153/CMB-1996-035-9 · Zbl 0870.34073 · doi:10.4153/CMB-1996-035-9
[10] Gyori I, Oscillation Theory of Delay Differential Equations with Applications, Clarendon (1991)
[11] Krasnoselskii MA, Positive Solutions of Operator Equations, Gorninggen (1964)
[12] Kuang Y, Delay Differential Equations with Applications in Population Dynamics, Academic Press (1993) · Zbl 0777.34002
[13] Kulenovic MRS, Bull. Math. Biol. 44 pp 615– (1987)
[14] DOI: 10.1016/0898-1221(89)90010-2 · Zbl 0686.92019 · doi:10.1016/0898-1221(89)90010-2
[15] DOI: 10.1090/S0002-9939-1983-0695252-7 · doi:10.1090/S0002-9939-1983-0695252-7
[16] Lakshmikantham V, Theory of Impulsive Differential Equations, World Scientific (1989) · Zbl 0718.34011
[17] DOI: 10.1016/S0362-546X(01)00847-1 · Zbl 1015.34069 · doi:10.1016/S0362-546X(01)00847-1
[18] DOI: 10.1016/S0898-1221(00)00328-X · Zbl 0989.34061 · doi:10.1016/S0898-1221(00)00328-X
[19] DOI: 10.1016/S0362-546X(03)00041-5 · Zbl 1037.34061 · doi:10.1016/S0362-546X(03)00041-5
[20] Saker SH, Computers Math. Applic
[21] Shen JH, Acta Math. Sinica 40 pp 53– (1997)
[22] DOI: 10.1006/jmaa.1998.6093 · Zbl 0917.34060 · doi:10.1006/jmaa.1998.6093
[23] DOI: 10.1016/S0022-247X(02)00613-3 · Zbl 1032.34077 · doi:10.1016/S0022-247X(02)00613-3
[24] DOI: 10.1016/S0362-546X(02)00129-3 · Zbl 1027.34086 · doi:10.1016/S0362-546X(02)00129-3
[25] Zhang XS, Indian J. Pure Appl. Math. 29 pp 871– (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.