×

An improved reproducing kernel method for Fredholm integro-differential type two-point boundary value problems. (English) Zbl 1499.30314

Summary: In this work, an improved reproducing kernel method to find the numerical solution of Fredholm integro-differential equation type boundary value problems has been developed. Based on the good properties of reproducing kernel function and the conjugate operator, the solution representation is obtained. Meanwhile, we prove that the approximation converges to the exact solution uniformly. After that the convergence estimates are derived.

MSC:

30E25 Boundary value problems in the complex plane
65L03 Numerical methods for functional-differential equations
47B32 Linear operators in reproducing-kernel Hilbert spaces (including de Branges, de Branges-Rovnyak, and other structured spaces)
Full Text: DOI

References:

[1] Berlinet, A.; Thomas-Agnan, C., Reproducing Kernel Hilbert Space in Probability and Statistics (2004), Kluwer Academic Publishers, Springer US · Zbl 1145.62002
[2] Bloom, F., Asympotic bounds for solutions to a system of damped integro-differential equations of electromagnetic theory, J. Math. Anal. Appl., 73, 524-542 (1980) · Zbl 0434.45018 · doi:10.1016/0022-247X(80)90297-8
[3] Cui, M. G.; Du, H., Representation of exact solution for the nonlinear Volterra-Fredholm integral equations, Appl. Math. Comput., 182, 1795-1802 (2006) · Zbl 1110.45005
[4] Cui, M. G.; Lin, Y. Z., Nonlinear Numerical Analysis in the Reproducing Kernel Space (2009), Nova Science Publishers, New York · Zbl 1165.65300
[5] Daniel, A., Reproducing Kernel Spaces and Applications (2003), Springer, Birkhäuser Verlag · Zbl 1021.00005
[6] Delves, L. M.; Mohamed, J. L., Computational Methods for Integral Equations (1985), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0592.65093
[7] Du, H.; Shen, J., Reproducing kernel method of solving singular integral equation with cosecant kernel, J. Math. Anal. Appl., 348, 308-314 (2008) · Zbl 1152.45007 · doi:10.1016/j.jmaa.2008.07.037
[8] Du, J.; Cui, M. G., Solving the forced Duffing equation with integral boundary conditions in the reproducing kernel space, Int. J. Comput. Math., 87, 2088-2100 (2010) · Zbl 1213.65106 · doi:10.1080/00207160802610843
[9] Forbes, L. K.; Crozier, S.; Doddrell, D. M., Calculating current densities and fields produced by shielded magnetic resonance imaging probes, SIAM J. Appl. Math., 57, 401-425 (1997) · Zbl 0871.65116 · doi:10.1137/S0036139995283110
[10] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving Ordinary Differential Equations I Nonstiff Problems (1993), Springer-Verlag: Springer-Verlag, New York · Zbl 0789.65048
[11] Holmaker, K., Global asymptotic for a stationary solution of a system of integro-differential equations describing the formation of liver zones, J. Math. Anal. Appl., 24, 116-128 (1993) · Zbl 0767.45005
[12] Hu, S.; Wan, Z.; Khavanin, M., On the existence and uniqueness for nonlinear integro-differential equations, J. Math. Phys. Sci., 21, 93-103 (1987) · Zbl 0625.45018
[13] Jiang, W.; Cui, M. G., Solving nonlinear singular pseudoparabolic equations with nonlocal mixed conditions in the reproducing kernel space, Int. J. Comput. Math., 87, 3430-3442 (2010) · Zbl 1215.65160 · doi:10.1080/00207160903082397
[14] Liz, E.; Nieto, J. J., Boundary value problems for second order integro-differential equations of Fredholm type, J. Comput. Appl. Math., 72, 215-225 (1996) · Zbl 0857.45006 · doi:10.1016/0377-0427(95)00273-1
[15] Niu, J.; Lin, Y. Z.; Zhang, C. P., Numerical solution of nonlinear three-point boundary value problem on the positive half-line, Math. Methods Appl. Sci., 35, 1601-1610 (2012) · Zbl 1252.34021 · doi:10.1002/mma.2549
[16] Niu, J.; Lin, Y. Z.; Zhang, C. P., Approximate solution of nonlinear multi-point boundary value problem on the half-line, Math. Model. Anal., 17, 190-202 (2012) · Zbl 1266.34032 · doi:10.3846/13926292.2012.660889
[17] Pandey, P. K., Non-standard difference method for numerical solution of linear Fredholm integro-differential type two-point boundary value problems, Open Access Lib. J., 2, 1-10 (2015)
[18] Turkyilmazoglu, M., Effective computation of exact and analytic approximate solutions to singular nonlinear equatons of Lane-Emden-Fowler type, Appl. Math. Model., 37, 7539-7548 (2013) · Zbl 1449.65171 · doi:10.1016/j.apm.2013.02.014
[19] Turkyilmazoglu, M., High-order nonlinear Volterra-Fredholm-Hammerstein integro-differential equations and their effective computation, Appl. Math. Comput., 247, 410-416 (2014) · Zbl 1338.45007
[20] Turkyilmazoglu, M., An effective approach for numerical solutions of high-order Fredholm integro-differential equations, Appl. Math. Comput., 227, 384-398 (2014) · Zbl 1364.65154
[21] Wang, Y. L.; Pang, J.; Li, Z. Y., Efficient solution of a class of partial integro-differential equation in reproducing kernel space, Int. J. Comput. Math., 87, 3196-3198 (2010) · Zbl 1209.65151 · doi:10.1080/00207160902890287
[22] Wang, Y. L.; Temuer, C. L.; Chen, Z., Using reproducing kernel for solving a class of singular weakly nonlinear boundary value problems, International Journal of Computer Mathematics, 87, 367-380 (2010) · Zbl 1185.65134 · doi:10.1080/00207160802047640
[23] Wu, B. Y.; Lin, Y. Z., Application of the Reproducing Kernel Space (2012), Science Press
[24] Yalcinbas, S.; Sezer, M.; Sorkun, H. H., Legendre polynomial solution of high-order linear fredholm integro-differential equations, Appl. Math. Comput., 210, 334-349 (2009) · Zbl 1162.65420
[25] Yang, L. H.; Lin, Y., Reproducing kernel methods for solving linear initial-boundary-value problems, Electron. J. Differ. Equ., 15, 359-370 (2008)
[26] Zhao, J.; Corless, R. M., Compact finite difference method has been used for integro-differential equations, Appl. Math. Comput., 177, 271-288 (2006) · Zbl 1331.65180
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.