×

Solution of nonlinear Volterra-Fredholm integrodifferential equations via hybrid of block-pulse functions and Lagrange interpolating polynomials. (English) Zbl 1268.65168

Summary: An efficient hybrid method is developed to approximate the solution of the high-order nonlinear Volterra-Fredholm integro-differential equations. The properties of hybrid functions consisting of block-pulse functions and Lagrange interpolating polynomials are first presented. These properties are then used to reduce the solution of the nonlinear Volterra-Fredholm integro-differential equations to the solution of algebraic equations whose solution is much more easier than the original one. The validity and applicability of the proposed method are demonstrated through illustrative examples. The method is simple, easy to implement and yields very accurate results.

MSC:

65R20 Numerical methods for integral equations
45J05 Integro-ordinary differential equations
45B05 Fredholm integral equations
45D05 Volterra integral equations
45G10 Other nonlinear integral equations
Full Text: DOI

References:

[1] A. D. Polyanin and A. V. Manzhirov, Handbook of Integral Equations, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2nd edition, 2008. · Zbl 1217.35166 · doi:10.1134/S1064562408040364
[2] P. J. Van der Houwen and B. P. Sommeijer, “Euler-Chebyshev methods for integro-differential equations,” Applied Numerical Mathematics, vol. 24, no. 2-3, pp. 203-218, 1997. · Zbl 0881.65141 · doi:10.1016/S0168-9274(97)00021-4
[3] W. H. Enright and M. Hu, “Continuous Runge-Kutta methods for neutral Volterra integro-differential equations with delay,” Applied Numerical Mathematics, vol. 24, no. 2-3, pp. 175-190, 1997. · Zbl 0876.65089 · doi:10.1016/S0168-9274(97)00019-6
[4] P. Darania and A. Ebadian, “A method for the numerical solution of the integro-differential equations,” Applied Mathematics and Computation, vol. 188, no. 1, pp. 657-668, 2007. · Zbl 1121.65127 · doi:10.1016/j.amc.2006.10.046
[5] A. Shidfar, A. Molabahrami, A. Babaei, and A. Yazdanian, “A series solution of the nonlinear Volterra and Fredholm integro-differential equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 2, pp. 205-215, 2010. · Zbl 1221.65343 · doi:10.1016/j.cnsns.2009.03.015
[6] J. E. Mittler, B. Sulzer, A. U. Neumann, and A. S. Perelson, “Influence of delayed viral production on viral dynamics in HIV-1 infected patients,” Mathematical Biosciences, vol. 152, no. 2, pp. 143-163, 1998. · Zbl 0946.92011 · doi:10.1016/S0025-5564(98)10027-5
[7] S. Yalcinbas and M. Sezer, “The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials,” Applied Mathematics and Computation, vol. 112, no. 2-3, pp. 291-308, 2000. · Zbl 1023.65147 · doi:10.1016/S0096-3003(99)00059-4
[8] K. Maleknejad and Y. Mahmoudi, “Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-differential equations,” Applied Mathematics and Computation, vol. 145, no. 2-3, pp. 641-653, 2003. · Zbl 1032.65144 · doi:10.1016/S0096-3003(03)00152-8
[9] P. Darania and K. Ivaz, “Numerical solution of nonlinear Volterra-Fredholm integro-differential equations,” Computers & Mathematics with Applications, vol. 56, no. 9, pp. 2197-2209, 2008. · Zbl 1165.65404 · doi:10.1016/j.camwa.2008.03.045
[10] F. Bloom, “Asymptotic bounds for solutions to a system of damped integro-differential equations of electromagnetic theory,” Journal of Mathematical Analysis and Applications, vol. 73, no. 2, pp. 524-542, 1980. · Zbl 0434.45018 · doi:10.1016/0022-247X(80)90297-8
[11] K. Holmåker, “Global asymptotic stability for a stationary solution of a system of integro-differential equations describing the formation of liver zones,” SIAM Journal on Mathematical Analysis, vol. 24, no. 1, pp. 116-128, 1993. · Zbl 0767.45005 · doi:10.1137/0524008
[12] L. K. Forbes, S. Crozier, and D. M. Doddrell, “Calculating current densities and fields produced by shielded magnetic resonance imaging probes,” SIAM Journal on Applied Mathematics, vol. 57, no. 2, pp. 401-425, 1997. · Zbl 0871.65116 · doi:10.1137/S0036139995283110
[13] A. Akyüz and M. Sezer, “A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations in the most general form,” International Journal of Computer Mathematics, vol. 84, no. 4, pp. 527-539, 2007. · Zbl 1118.65129 · doi:10.1080/00207160701227848
[14] I. P. Streltsov, “Application of Chebyshev and Legendre polynomials on discrete point set to function interpolation and solving Fredholm integral equations,” Computer Physics Communications, vol. 126, no. 1-2, pp. 178-181, 2000. · Zbl 0963.65143 · doi:10.1016/S0010-4655(99)00520-2
[15] E. Babolian, Z. Masouri, and S. Hatamzadeh-Varmazyar, “Numerical solution of nonlinear Volterra-Fredholm integro-differential equations via direct method using triangular functions,” Computers & Mathematics with Applications, vol. 58, no. 2, pp. 239-247, 2009. · Zbl 1189.65306 · doi:10.1016/j.camwa.2009.03.087
[16] N. Bildik, A. Konuralp, and S. Yal\cs, “Comparison of Legendre polynomial approximation and variational iteration method for the solutions of general linear Fredholm integro-differential equations,” Computers & Mathematics with Applications, vol. 59, no. 6, pp. 1909-1917, 2010. · Zbl 1189.65307 · doi:10.1016/j.camwa.2009.06.022
[17] S.-Q. Wang and J.-H. He, “Variational iteration method for solving integro-differential equations,” Physics Letters A, vol. 367, no. 3, pp. 188-191, 2007. · Zbl 1209.65152 · doi:10.1016/j.physleta.2007.02.049
[18] J. I. Ramos, “Iterative and non-iterative methods for non-linear Volterra integro-differential equations,” Applied Mathematics and Computation, vol. 214, no. 1, pp. 287-296, 2009. · Zbl 1202.65179 · doi:10.1016/j.amc.2009.03.067
[19] M. Dehghan and R. Salehi, “The numerical solution of the non-linear integro-differential equations based on the meshless method,” Journal of Computational and Applied Mathematics, vol. 236, no. 9, pp. 2367-2377, 2012. · Zbl 1243.65154 · doi:10.1016/j.cam.2011.11.022
[20] H. R. Marzban, S. M. Hoseini, and M. Razzaghi, “Solution of Volterra’s population model via block-pulse functions and Lagrange-interpolating polynomials,” Mathematical Methods in the Applied Sciences, vol. 32, no. 2, pp. 127-134, 2009. · Zbl 1156.65106 · doi:10.1002/mma.1028
[21] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer, New York, NY, USA, 1987. · Zbl 0717.76004
[22] H. R. Marzban, H. R. Tabrizidooz, and M. Razzaghi, “A composite collocation method for the nonlinear mixed Volterra-Fredholm-Hammerstein integral equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 3, pp. 1186-1194, 2011. · Zbl 1221.65340 · doi:10.1016/j.cnsns.2010.06.013
[23] E. L. Ortiz, “The tau method,” SIAM Journal on Numerical Analysis, vol. 6, pp. 480-492, 1969. · Zbl 0195.45701 · doi:10.1137/0706044
[24] G. Ebadi, M. Y. Rahimi-Ardabili, and S. Shahmorad, “Numerical solution of the nonlinear Volterra integro-differential equations by the tau method,” Applied Mathematics and Computation, vol. 188, no. 2, pp. 1580-1586, 2007. · Zbl 1119.65123 · doi:10.1016/j.amc.2006.11.024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.