×

Qualitative properties for Perona-Malik type equations. (English) Zbl 1298.35107

The authors study qualitative properties of the solutions to forward-backward parabolic equations of the form \[ u_t = \varphi''(u_x)u_{xx} - G(u), \quad (x,t) \in (-1,1)\times [0,T] \] supplemented by the conditions \[ \begin{aligned} u_x(-1,t) &= u_x(1,t) = 0, \quad \forall t \in [0,T),\\ u(x,0) & = u_0(x), \quad \forall x \in (-1,1) \end{aligned} \] and their generalization to an \(n\)-dimensional open domain \(\Omega\), \[ \begin{aligned} &u_t = \text{div}\left[\varphi'(|\nabla u|)\frac{\nabla u}{|\nabla u|}\right] - G(u), \quad \text{in } \Omega\times [0,T),\\ &\frac{\partial u}{\partial n} = 0, \quad \text{on } \partial\Omega\times [0,T),\\ &u(x,0) = u_0(x), \quad \forall x \in \Omega. \end{aligned} \] Here, \(\varphi\) is a nonlinear function of class \(C^2\) such that \(\varphi'(0) = 0\) without any sign constraint. The above-mentioned problems are well-posed if \(\varphi'' > 0\) and ill-posed if \(\varphi'' < 0\).
First, the author proves a series of results devoted to a priori estimates of solutions to the initial-boundary value problems of the form \( \|u(x,t)\|_{L^p(\Omega)} \leq \|u(x,0)\|_{L^p(\Omega)}\) for every \(p \in [1,\infty]\) and for every \(t \in [0,T)\) and \(\|\nabla u(x,t)\|_{L^1(\Omega)} \leq \|\nabla u(x,0)\|_{L^1(\Omega)}\) \(\forall t \in [0,T)\) under additional assumptions on \(\varphi\).
Finally, the global nonexistence of solutions for the initial-boundary value problem related to the equation \[ u_t = \varphi''(u_x)u_{xx} \pm u^2, \quad \text{in } (-1,1)\times (0,\infty) \] is presented, with a suitable hypothesis on the initial data.

MSC:

35K55 Nonlinear parabolic equations
35B45 A priori estimates in context of PDEs
35B50 Maximum principles in context of PDEs

References:

[1] M. Badii: Periodic solutions for a doubly nonlinear diffusion equation in hydrology ; in Progress in Partial Differential Equations 1 , Pitman Res. Notes Math. Ser. 383 , Longman, Harlow, 28-39, 1998. · Zbl 0914.35060
[2] D.S. Cohen and J.D. Murray: A generalized diffusion model for growth and dispersal in a population , J. Math. Biol. 12 (1981), 237-249. · Zbl 0474.92013 · doi:10.1007/BF00276132
[3] S. Esedoḡlu: Stability properties of the Perona-Malik scheme , SIAM J. Numer. Anal. 44 (2006), 1297-1313. · Zbl 1127.94002 · doi:10.1137/S0036142903424817
[4] M. Ghisi and M. Gobbino: A class of local classical solutions for the one-dimensional Perona-Malik equation , Trans. Amer. Math. Soc. 361 (2009), 6429-6446. · Zbl 1213.35320 · doi:10.1090/S0002-9947-09-04793-X
[5] M. Ghisi and M. Gobbino: Gradient estimates for the Perona-Malik equation , Math. Ann. 337 (2007), 557-590. · Zbl 1130.35081 · doi:10.1007/s00208-006-0047-1
[6] M. Gobbino: Entire solutions of the one-dimensional Perona-Malik equation , Comm. Partial Differential Equations 32 (2007), 719-743. · Zbl 1134.35062 · doi:10.1080/03605300600634981
[7] V.N. Grebenev: Interfacial phenomenon for one-dimensional equation of forward-backward parabolic type , Ann. Mat. Pura Appl. (4) 171 (1996), 379-394. · Zbl 0874.35060 · doi:10.1007/BF01759392
[8] K. Höllig: Existence of infinitely many solutions for a forward backward heat equation , Trans. Amer. Math. Soc. 278 (1983), 299-316. · Zbl 0524.35057 · doi:10.2307/1999317
[9] D. Horstmann, K.J. Painter and H.G. Othmer: Aggregation under local reinforcement: from lattice to continuum , European J. Appl. Math. 15 (2004), 546-576. · Zbl 1062.92007 · doi:10.1017/S0956792504005571
[10] B. Kawohl: From Mumford-Shah to Perona-Malik in image processing , Math. Methods Appl. Sci. 27 (2004), 1803-1814. · Zbl 1060.35054 · doi:10.1002/mma.564
[11] B. Kawohl and N. Kutev: Maximum and comparison principle for one-dimensional anisotropic diffusion , Math. Ann. 311 (1998), 107-123. · Zbl 0909.35025 · doi:10.1007/s002080050179
[12] S. Kichenassamy: The Perona-Malik paradox , SIAM J. Appl. Math. 57 (1997), 1328-1342. · Zbl 0887.35071 · doi:10.1137/S003613999529558X
[13] O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural’ceva: Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967. · Zbl 0164.12302
[14] R. March, M. Rosati, A. Schiaffino: BV solutions of the one-dimensional Perona-Malik equation , (2008),
[15] C. Mascia, A. Terracina and A. Tesei: Two-phase entropy solutions of a forward-backward parabolic equation , Arch. Ration. Mech. Anal. 194 (2009), 887-925. · Zbl 1183.35163 · doi:10.1007/s00205-008-0185-6
[16] A. Novick-Cohen and R.L. Pego: Stable patterns in a viscous diffusion equation , Trans. Amer. Math. Soc. 324 (1991), 331-351. · Zbl 0738.35035 · doi:10.2307/2001511
[17] P. Perona, J. Malik: Scale space and edge detection using anisotropic diffusion , IEEE Trans. Pattern Anal. Mach. Intell. 12 (1990), 629-639.
[18] P.I. Plotnikov: Forward-backward parabolic equations and hysteresis , J. Math. Sci. (New York) 93 (1999), 747-766.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.