×

Stiefel-Whitney currents. (English) Zbl 1054.53088

Summary: A canonically defined mod 2 linear dependency current is associated to each collection \(\nu\) of sections, \(\nu_1,\cdots,\nu_m\), of a real rank \(n\) vector bundle. This current is supported on the linear dependency set of \(\nu\). It is defined whenever the collection \(\nu\) satisfies a weak measure-theoretic condition called ‘atomicity’. Essentially any reasonable collection of sections satisfies this condition, vastly extending the usual general position hypothesis. This current is a mod 2 \(d\)-closed locally integrally flat current of degree \(q=n-m+1\) and hence determines a \(\mathbb Z_2\)-cohomology class. This class is shown to be well defined independent of the collection of sections. Moreover, it is the \(q\)th Stiefel-Whitney class of the vector bundle.
More is true if \(q\) is odd or \(q=n\). In this case a linear dependency current which is twisted by the orientation of the bundle can be associated to the collection \(\nu\). The mod 2 reduction of this current is the mod 2 linear dependency current. The cohomology class of the linear dependency current is 2-torsion and is the \(q\)th twisted integral Stiefel-Whitney class of the bundle.
In addition, higher dependency and general degeneracy currents of bundle maps are studied, together with applications to singularities of projections and maps.
These results rely on a theorem of Federer, which states that the complex of integrally flat currents mod \(p\) computes cohomology mod \(p\). An alternate approach to Federer’s theorem is offered in an appendix. This approach is simpler and is via sheaf theory.

MSC:

53C65 Integral geometry
49Q15 Geometric measure and integration theory, integral and normal currents in optimization
58A25 Currents in global analysis

References:

[1] Banchoff, T. and McCrory, C. Whitney duality and singularities of projections,L.N.M.,597, 68–82, (1976). · Zbl 0382.57016
[2] Borel, A. Topics in the homology theory of fibre bundles,L.N.M.,36, 1–95, (1967). · Zbl 0158.20503
[3] Bott, R. and Chern, S.S. Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections,Acta Math.,114, 71–112, (1965). · Zbl 0148.31906 · doi:10.1007/BF02391818
[4] Eells, J. A generalization of the Gauss-Bonnet Theorem,Trans. A.M.S.,92, 142–153, (1959). · Zbl 0088.38003 · doi:10.1090/S0002-9947-1959-0111052-1
[5] Federer, H.Geometric Measure Theory. Springer-Verlag, New York, 1969. · Zbl 0176.00801
[6] Fu, J. and McCrory, C. Stiefel–Whitney classes and the conormal cycle of a singular variety,Trans. A.M.S.,349 (2), 809–835, (1997). · Zbl 0873.32006 · doi:10.1090/S0002-9947-97-01815-1
[7] Fulton, W.Intersection Theory. Ergobnisse der Mathematik und ihrer Grenzgebeite 3, Folge, Band 2, Springer-Verlag, Berlin-Heidelberg, 1984. · Zbl 0541.14005
[8] Godement, R.Topologie Algébrique et Théorie des Faisceaux. Hermann, Paris, 1964.
[9] Hardt, R.M. Slicing and intersection theory for chains associated with real analytic varieties,Acta Math.,129, 75–136, (1972). · Zbl 0234.32005 · doi:10.1007/BF02392214
[10] Harvey, F.R. and Lawson, H.B. A theory of characteristic currents associated with a singular connection,Astérisque,213, 1–268, (1993). · Zbl 0804.53037
[11] Harvey, F.R. and Lawson, H.B. A theory of characteristic currents associated with a singular connection – Announcement,B.A.M.S.,31, 54–63, (1994). · Zbl 0809.53028 · doi:10.1090/S0273-0979-1994-00497-5
[12] Harvey, F.R. and Lawson, H.B. Geometric residue theorems,Am. J. Math.,117, 829–873, (1995). · Zbl 0851.58036 · doi:10.2307/2374951
[13] Harvey, F.R. and Lawson, H.B. Morse Theory and Stokes’s Theorem, (to appear), 1–32.
[14] Harvey, F.R. and Semmes, S. Zero divisors of atomic functions,Ann. Math.,135, 567–600, (1992). · Zbl 0767.57017 · doi:10.2307/2946577
[15] Halperin, S. and Toledo, D. Stiefel–Whitney homology classes,Ann. Math. (S2),96, 511–525, (1972). · Zbl 0255.57007 · doi:10.2307/1970823
[16] Milnor, J.W. and Stasheff, J.D. Characteristic Classes,Ann. Math. Studies,76, Princeton University Press, Princeton, NJ. · Zbl 1079.57504
[17] Pontrjagin, L.S. Vector fields on manifolds,Mat. Sbornik N.S.,24, 129–162, (1949).
[18] Pontrjagin, L.S. Characteristic cycles on differentiable manifolds,Mat. Sbornik N.S.,21, 233–284, (1947);A.M.S. Translation,32, (1950).
[19] Porteous, I.R. Simple singularities of maps – Proceedings of Liverpool Singularities Symposium, I,Lecture Notes in Mathematics,192, 286–307, (1971). · Zbl 0221.57016
[20] Ronga, F. Le calcul de la classe de cohomologie duale a \(\overline \sum ^k \) -Proceedings of Liverpool Singularities Symposium, I,Lecture Notes in Mathematics,192, 313–315, (1971). · Zbl 0213.24802
[21] Steenrod, N.E.The Topology of Fibre Bundles. Princeton University Press, Princeton, NJ, 1951. · Zbl 0054.07103
[22] Stiefel, E. Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten,Comment. Math. Helv.,8, 305–353, (1934–1936). · JFM 62.0662.02 · doi:10.1007/BF01199559
[23] Thom, R. Les singularitiés des applications différentiables,Ann. Inst. Fourier, Grenoble,6, 43–87, (1955–1956). · Zbl 0075.32104 · doi:10.5802/aif.60
[24] Whitney, H. Sphere-spaces,Pwc. Natl. Acad. Sci.,21, 64–68, (1935).
[25] Zweck, J. Compactification problems in the theory of characteristic currents associated with a singular connection, Thesis, Rice University, Houston, TX, 1993.
[26] Zweck, J. Euler and Pontrjagin currents of a section of a compactifled real bundle,Diff. Geom. Applns.,5, 277–309, (1995). · Zbl 0846.53018 · doi:10.1016/0926-2245(95)92850-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.