×

Efficient particle control in systems with large density gradients. (English) Zbl 07863607

Summary: Simulations of large density gradients present a number of challenges for direct Monte Carlo methods, since they lead to too few particles in dilute regions and prohibitively many in the dense regions. We propose a particle control methodology that gives the user more control of the number of particles per cell by introducing a variable weight for each particle. The proposed scheme is based on the stochastic weighted particle method, requires only small modifications to DSMC, and exactly conserves mass, momentum, and energy. In validation tests of systems with density ratios of order \(10^2\)–\(10^4\), we observe \(10^1\)–\(10^2\) times less variance in the dilute region compared to a DSMC solution with the same number of system particles, while introducing a moderate additional computational cost.

MSC:

82Cxx Time-dependent statistical mechanics (dynamic and nonequilibrium)
76Mxx Basic methods in fluid mechanics
76Pxx Rarefied gas flows, Boltzmann equation in fluid mechanics

Software:

Phonon-Code
Full Text: DOI

References:

[1] Abe, Takashi, Generalized scheme of the no-time-counter scheme for the DSMC in rarefied gas flow analysis, Comput. Fluids, 22.2-3, 253-257, 1993 · Zbl 0778.76082
[2] Alexander, Francis J.; Garcia, Alejandro L.; Alder, Berni J., Cell size dependence of transport coefficients in stochastic particle algorithms, Phys. Fluids, 10, 6, 1540-1542, 1998
[3] Araki, Samuel J.; Martin, Robert S., Interspecies fractional collisions, Phys. Plasmas, 27, 3, Article 033504 pp., 2020
[4] Bird, Graeme A., Molecular gas dynamics and the direct simulation of gas flows, (Molecular Gas Dynamics and the Direct Simulation of Gas Flows, 1994)
[5] Boyd, Iain D.; Schwartzentruber, Thomas E., Nonequilibrium Gas Dynamics and Molecular Simulation, vol. 42, 2017, Cambridge University Press · Zbl 1366.82001
[6] Cooper, Marc A.; Larsen, Edward W., Automated weight windows for global Monte Carlo particle transport calculations, Nucl. Sci. Eng., 137, 1, 1-13, 2001
[7] Degond, Pierre; Dimarco, Giacomo; Mieussens, Luc, A moving interface method for dynamic kinetic-fluid coupling, J. Comput. Phys., 227, 2, 1176-1208, 2007 · Zbl 1388.76335
[8] Degond, Pierre; Dimarco, Giacomo; Pareschi, Lorenzo, The moment-guided Monte Carlo method, Int. J. Numer. Methods Fluids, 67, 2, 189-213, 2011 · Zbl 1227.82061
[9] Djordjić, Vladimir, Boltzmann collision operator for polyatomic gases in agreement with experimental data and DSMC method, Contin. Mech. Thermodyn., 35, 1, 103-119, 2023
[10] Dolbow, John; Belytschko, Ted, Numerical integration of the Galerkin weak form in meshfree methods, Comput. Mech., 23, 3, 219-230, 1999 · Zbl 0963.74076
[11] Elgin, James B., Getting the good bounce: Techniques for efficient Monte Carlo analysis of complex reacting flows, 1983, Tech. rep. Spectral Sciences Inc Burlington MA
[12] Fang, Ming, DSMC modeling of rarefied ionization reactions and applications to hypervelocity spacecraft reentry flows, Adv. Aerodyn., 2, 1, 1-25, 2020
[13] Galitzine, Cyril; Boyd, Iain D., Development of an adaptive weighting scheme for DSMC and its application to an axisymmetric jet, AIP Conf. Proc., 1501, 1, 587-594, 2012, American Institute of Physics
[14] Gallis, Michael A.; Torczynski, John R., Effect of collision-partner selection schemes on the accuracy and efficiency of the direct simulation Monte Carlo method, Int. J. Numer. Methods Fluids, 67, 8, 1057-1072, 2011 · Zbl 1316.76087
[15] Gallis, Michael A.; Torczynski, John R., Investigation of the ellipsoidal-statistical Bhatnagar-Gross-Krook kinetic model applied to gas-phase transport of heat and tangential momentum between parallel walls, Phys. Fluids, 23, 3, Article 030601 pp., 2011
[16] Gallis, Michael A., Direct simulation Monte Carlo: the quest for speed, AIP Conf. Proc., 1628, 1, 27-36, 2014, American Institute of Physics
[17] Gallis, Michail A., Convergence behavior of a new DSMC algorithm, J. Comput. Phys., 228, 12, 4532-4548, 2009 · Zbl 1395.76075
[18] Gamba, Irene M.; Panferov, Vladislav; Villani, Cedric, On the Boltzmann equation for diffusively excited granular media, Commun. Math. Phys., 246, 3, 503-541, 2004 · Zbl 1106.82031
[19] Garcia, Alejandro L., Adaptive mesh and algorithm refinement using direct simulation Monte Carlo, J. Comput. Phys., 154, 1, 134-155, 1999 · Zbl 0954.76075
[20] García-Pareja, Salvador; Lallena, Antonio M.; Salvat, Francesc, Variance-reduction methods for Monte Carlo simulation of radiation transport, Front. Phys., 633, 2021
[21] Gorji, Mohammad H.; Küchlin, Stephan; Jenny, Patrick, Particle number control for direct simulation Monte-Carlo methodology using kernel estimates, Phys. Fluids, 31, 6, Article 062008 pp., 2019
[22] Gorji, Mohammad H.; Andric, Nemanja; Jenny, Patrick, Variance reduction for Fokker-Planck based particle Monte Carlo schemes, J. Comput. Phys., 295, 644-664, 2015 · Zbl 1349.82085
[23] Gorji, Mohammad H.; Jenny, Patrick, Fokker-Planck-DSMC algorithm for simulations of rarefied gas flows, J. Comput. Phys., 287, 110-129, 2015 · Zbl 1351.82074
[24] Gorji, Mohammad H.; Torrilhon, Maniel; Jenny, Patrick, Fokker-Planck model for computational studies of monatomic rarefied gas flows, J. Fluid Mech., 680, 574-601, 2011 · Zbl 1241.76342
[25] Hadjiconstantinou, Nicolas G., Analysis of discretization in the direct simulation Monte Carlo, Phys. Fluids, 12, 10, 2634-2638, 2000 · Zbl 1184.76203
[26] Hadjiconstantinou, Nicolas G., Statistical error in particle simulations of hydrodynamic phenomena, J. Comput. Phys., 187, 1, 274-297, 2003 · Zbl 1047.76578
[27] Hash, David B.; Hassan, Hassan A., A hybrid DSMC/Navier-Stokes solver, (33rd Aerospace Sciences Meeting and Exhibit, 1995), 410
[28] Hol, Jeroen D.; Schon, Thomas B.; Gustafsson, Fredrik, On resampling algorithms for particle filters, (2006 IEEE Nonlinear Statistical Signal Processing Workshop, 2006, IEEE), 79-82
[29] Kannenberg, Keith C.; Boyd, Iain D.; Dietrich, Stefan, Development of an object-oriented parallel DSMC code for plume impingement studies, (30th Thermophysics Conference, 2001), 2052
[30] Lama, Sonam; Zweck, John; Goeckner, Matthew, A higher order moment preserving reduction scheme for the stochastic weighted particle method, SIAM J. Sci. Comput., 42, 5, A2889-A2909, 2020 · Zbl 1452.65025
[31] Mahdavi, Amirmehran; Roohi, Ehsan, A novel hybrid DSMC-Fokker Planck algorithm implemented to rarefied gas flows, Vacuum, 181, Article 109736 pp., 2020
[32] Martin, Robert Scott; Cambier, Jean-Luc, Octree particle management for DSMC and PIC simulations, J. Comput. Phys., 327, 943-966, 2016 · Zbl 1373.76262
[33] Al-Mohssen, Husain Ali, An excursion with the Boltzmann equation at low speeds: Variance-reduced DSMC, 2010, Massachusetts Institute of Technology, PhD thesis
[34] Oblapenko, Georgii, Hedging direct simulation Monte Carlo bets via event splitting, J. Comput. Phys., 466, Article 111390 pp., 2022 · Zbl 07561067
[35] Péraud, Jean-Philippe M.; Hadjiconstantinou, Nicolas G., An alternative approach to efficient simulation of micro/nanoscale phonon transport, Appl. Phys. Lett., 101, 15, Article 153114 pp., 2012
[36] Pfeiffer, Marcel, A particle-based ellipsoidal statistical Bhatnagar-Gross-Krook solver with variable weights for the simulation of large density gradients in micro- and nano-nozzles, Phys. Fluids, 32, 11, Article 112009 pp., 2020
[37] Pfeiffer, Marcel, Two statistical particle split and merge methods for particle-in-cell codes, Comput. Phys. Commun., 191, 9-24, 2015 · Zbl 1344.82052
[38] Plimpton, Steve J., Direct simulation Monte Carlo on petaflop supercomputers and beyond, Phys. Fluids, 31, 8, Article 086101 pp., 2019
[39] Potthoff, Richard F.; Woodbury, Max A.; Manton, Kenneth G., “Equivalent sample size“ and “equivalent degrees of freedom” refinements for inference using survey weights under superpopulation models, J. Am. Stat. Assoc., 87, 418, 383-396, 1992 · Zbl 0783.62012
[40] Radtke, Gregg A.; Hadjiconstantinou, Nicolas G., Variance-reduced particle simulation of the Boltzmann transport equation in the relaxation-time approximation, Phys. Rev. E, 79, 5, Article 056711 pp., 2009
[41] Radtke, Gregg A.; Péraud, Jean-Philippe M.; Hadjiconstantinou, Nicolas G., On efficient simulations of multiscale kinetic transport, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 371, 1982, Article 20120182 pp., 2013 · Zbl 1353.76030
[42] Rjasanow, Sergej; Schreiber, Thomas; Wagner, Wolfgang, Reduction of the number of particles in the stochastic weighted particle method for the Boltzmann equation, J. Comput. Phys., 145, 1, 382-405, 1998 · Zbl 0909.65144
[43] Rjasanow, Sergej; Wagner, Wolfgang, A stochastic weighted particle method for the Boltzmann equation, J. Comput. Phys., 124, 2, 243-253, 1996 · Zbl 0883.65118
[44] Roohi, Ehsan; Stefanov, Stefan, Collision partner selection schemes in DSMC: from micro/nano flows to hypersonic flows, Phys. Rep., 656, 1-38, 2016
[45] Sadr, Mohsen; Gorji, Mohammad H., A continuous stochastic model for non-equilibrium dense gases, Phys. Fluids, 29, 12, Article 122007 pp., 2017
[46] Sadr, Mohsen; Hadjiconstantinou, Nicolas G., A variance-reduced direct Monte Carlo simulation method for solving the Boltzmann equation over a wide range of rarefaction, J. Comput. Phys., 472, Article 111677 pp., 2023 · Zbl 07620361
[47] Schmidt, David P.; Rutland, Christopher J., A new droplet collision algorithm, J. Comput. Phys., 164, 1, 62-80, 2000 · Zbl 0988.76079
[48] Schwartzentruber, Thomas E.; Boyd, Iain D., A hybrid particle-continuum method applied to shock waves, J. Comput. Phys., 215, 2, 402-416, 2006 · Zbl 1107.76059
[49] Sone, Yoshio, Molecular Gas Dynamics: Theory, Techniques, and Applications, 2007, Springer · Zbl 1144.76001
[50] Stephani, Kelly A.; Goldstein, David B.; Varghese, Philip L., A non-equilibrium surface reservoir approach for hybrid DSMC/Navier-Stokes particle generation, J. Comput. Phys., 232, 1, 468-481, 2013
[51] Wagnild, Ross M.; Gallis, Michael A., Continuum simulations of hypersonic flows in chemical and thermal nonequilibrium, J. Thermophys. Heat Transf., 32, 4, 846-860, 2018
[52] Wang, Wen-Lan; Boyd, Iain, Hybrid DSMC-CFD simulations of hypersonic flow over sharp and blunted bodies, (36th AIAA Thermophysics Conference, 2003), 3644
[53] Wijesinghe, Hettithanthrige S., Three-dimensional hybrid continuum-atomistic simulations for multiscale hydrodynamics, J. Fluids Eng., 126, 5, 768-777, 2004
[54] Wilmoth, Richard; Carlson, Ann; LeBeau, Gerald, DSMC grid methodologies for computing low-density, hypersonic flows about reusable launch vehicles, (31st Thermophysics Conference, 1996), 1812
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.