×

Stochastic network models in neuroscience: a Festschrift for Jack Cowan. Introduction to the special issue. (English) Zbl 1352.00032

From the text: The Banff International Research Station hosted a workshop in his honor, on Stochastic Network Models of Neocortex, July 17–24, 2014. This accompanying Festschrift celebrates Cowan’s contributions by assembling current research in stochastic phenomena in neural networks. It combines historical perspectives with new results including applications to epilepsy, path-integral methods, stochastic synchronization, higher-order correlation analysis, and pattern formation in visual cortex.

MSC:

00B30 Festschriften
92-06 Proceedings, conferences, collections, etc. pertaining to biology
92C20 Neural biology

Biographic References:

Cowan, Jack

References:

[1] Afgoustidis A. Orientation maps in V1 and non-Euclidean geometry. J Math Neurosci. 2015;5(1):24. · Zbl 1357.92008
[2] Baker TI, Cowan JD. Spontaneous pattern formation and pinning in the primary visual cortex. J Physiol (Paris). 2009;103(1):52-68. · doi:10.1016/j.jphysparis.2009.05.011
[3] Barreiro AK, Gjorgjieva J, Rieke F, Shea-Brown E. When do microcircuits produce beyond-pairwise correlations? Front Comput Neurosci. 2014;8:10. · doi:10.3389/fncom.2014.00010
[4] Benayoun M, Cowan JD, van Drongelen W, Wallace E. Avalanches in a stochastic model of spiking neurons. PLoS Comput Biol. 2010;6(7):e1000846. · doi:10.1371/journal.pcbi.1000846
[5] Bressloff PC. Path-integral methods for analyzing the effects of fluctuations in stochastic hybrid neural networks. J Math Neurosci. 2015;5:4. · Zbl 1361.92005 · doi:10.1186/s13408-014-0016-z
[6] Bressloff PC, Cowan JD. An amplitude equation approach to contextual effects in primary visual cortex. Neural Comput. 2002;14:493-525. · Zbl 0987.92005 · doi:10.1162/089976602317250870
[7] Bressloff, PC; Cowan, JD, Spontaneous pattern formation in primary visual cortex, 269-320 (2002), Boca Raton · Zbl 1132.92309
[8] Bressloff PC, Cowan JD. The functional geometry of local and horizontal connections in a model of V1. J Physiol (Paris). 2003;97(2):221-36. · doi:10.1016/j.jphysparis.2003.09.017
[9] Bressloff PC, Cowan JD. Spherical model of orientation and spatial frequency tuning in a cortical hypercolumn. Philos Trans R Soc Lond B. 2003;358:1643-67. · doi:10.1098/rstb.2002.1109
[10] Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ. Scalar and pseudoscalar bifurcations motivated by pattern formation on the visual cortex. Nonlinearity. 2001;14:739-75. · Zbl 1017.37025 · doi:10.1088/0951-7715/14/4/305
[11] Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC. Geometric visual hallucinations, Euclidean symmetry, and the functional architecture of visual cortex. Philos Trans R Soc Lond B. 2001;356:299-330. · doi:10.1098/rstb.2000.0769
[12] Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC. What geometric visual hallucinations tell us about the visual cortex. Neural Comput. 2002;14(3):473-91. · Zbl 1037.91083 · doi:10.1162/089976602317250861
[13] Bryant HL, Segundo JP. Spike initiation by transmembrane current: a white-noise analysis. J Physiol. 1976;260:279-314. · doi:10.1113/jphysiol.1976.sp011516
[14] Buice MA, Cowan JD. Field-theoretic approach to fluctuation effects in neural networks. Phys Rev E, Stat Nonlinear Soft Matter Phys. 2007;75(5 Pt 1):051919. · doi:10.1103/PhysRevE.75.051919
[15] Buice MA, Cowan JD. Statistical mechanics of the neocortex. Prog Biophys Mol Biol. 2009;99(2-3):53-86. · doi:10.1016/j.pbiomolbio.2009.07.003
[16] Buice MA, Cowan JD, Chow CC. Systematic fluctuation expansion for neural network activity equations. Neural Comput. 2010;22(2):377-426. · Zbl 1183.92013 · doi:10.1162/neco.2009.02-09-960
[17] Butz EG, Cowan JD. Transient potentials in dendritic systems of arbitrary geometry. Biophys J. 1974;14(9):661-89. · doi:10.1016/S0006-3495(74)85943-6
[18] Campbell S, Wang D. Synchronization and desynchronization in a network of locally coupled Wilson-Cowan oscillators. IEEE Trans Neural Netw. 1996;7(3):541-54. · doi:10.1109/72.501714
[19] Chow CC, Buice MA. Path integral methods for stochastic differential equations. J Math Neurosci. 2015;5:8. · Zbl 1357.92009 · doi:10.1186/s13408-015-0018-5
[20] Cowan, JD, Statistical mechanics of nervous nets, 181-188 (1968), Berlin · doi:10.1007/978-3-642-87596-0_17
[21] Cowan JD. Spontaneous symmetry breaking in large scale nervous activity. Int J Quant Chem. 1982;22(5):1059-82. · doi:10.1002/qua.560220518
[22] Cowan, JD, A personal account of the development of the field theory of large-scale brain activity from 1945 onward, 47-96 (2014), Berlin · Zbl 1462.92013
[23] Cowan, JD; Friedman, EA; Lippmann, R. (ed.); Moody, J. (ed.); Touretzky, D. (ed.), Simple spin models for the development of ocular dominance columns and iso-orientation patches, No. 3, 26-31 (1991), San Mateo
[24] Cowan JD, Neuman J, Van Drongelen W. Wilson-Cowan equations for neocortical dynamics. J Math Neurosci. 2016;6(1):1. · Zbl 1356.92016 · doi:10.1186/s13408-015-0034-5
[25] Cowan JD, Neuman J, Kiewiet B, Van Drongelen W. Self-organized criticality in a network of interacting neurons. J Stat Mech Theory Exp. 2013;2013(4):P04030. · Zbl 1456.82802 · doi:10.1088/1742-5468/2013/04/P04030
[26] Ermentrout GB, Cowan JD. A mathematical theory of visual hallucination patterns. Biol Cybern. 1979;34:137-50. · Zbl 0409.92008 · doi:10.1007/BF00336965
[27] Ermentrout GB, Cowan JD. Temporal oscillations in neuronal nets. J Math Biol. 1979;7(3):265-80. · Zbl 0402.92012 · doi:10.1007/BF00275728
[28] Ermentrout GB, Cowan JD. Large scale spatially organized activity in neural nets. SIAM J Appl Math. 1980;38(1):1-21. · Zbl 0448.92008 · doi:10.1137/0138001
[29] Ermentrout GB, Cowan JD. Secondary bifurcation in neuronal nets. SIAM J Appl Math. 1980;39(2):323-40. · Zbl 0453.92007 · doi:10.1137/0139028
[30] Fasoli D, Faugeras O, Panzeri S. A formalism for evaluating analytically the cross-correlation structure of a firing-rate network model. J Math Neurosci. 2015;5:6. · Zbl 1357.92011 · doi:10.1186/s13408-015-0020-y
[31] Feldman JL, Cowan JD. Large-scale activity in neural nets I: theory with application to motoneuron pool responses. Biol Cybern. 1975;17(1):29-38. · Zbl 0291.92015 · doi:10.1007/BF00326707
[32] Feldman JL, Cowan JD. Large-scale activity in neural nets II: a model for the brainstem respiratory oscillator. Biol Cybern. 1975;17(1):39-51. · Zbl 0291.92016 · doi:10.1007/BF00326708
[33] Gerstner W, van Hemmen JL, Cowan JD. What matters in neuronal locking? Neural Comput. 1996;8(8):1653-76. · doi:10.1162/neco.1996.8.8.1653
[34] Hunter JD, Milton JG, Thomas PJ, Cowan JD. Resonance effect for neural spike time reliability. J Neurophysiol. 1998;80:1427-38.
[35] Kaschube M, Schnabel M, Löwel S, Coppola DM, White LE, Wolf F. Universality in the evolution of orientation columns in the visual cortex. Science. 2010;330(6007):1113-6. · doi:10.1126/science.1194869
[36] Kaschube M, Schnabel M, Wolf F, Löwel S. Interareal coordination of columnar architectures during visual cortical development. Proc Natl Acad Sci USA. 2009;106(40):17205-10. · doi:10.1073/pnas.0901615106
[37] Kerner EH. A statistical mechanics of interacting biological species. Bull Math Biophys. 1957;19(2):121-46. · doi:10.1007/BF02477883
[38] Leen DA, Shea-Brown E. A simple mechanism for beyond-pairwise correlations in integrate-and-fire neurons. J Math Neurosci. 2015;5(1):30. · Zbl 1356.92019 · doi:10.1186/s13408-015-0030-9
[39] Mainen ZF, Sejnowski TJ. Reliability of spike timing in neocortical neurons. Science. 1995;268:1503-6. · doi:10.1126/science.7770778
[40] Meijer HGE, Eissa TL, Kiewiet B, Neuman JF, Schevon CA, Emerson RG, Goodman RR, McKhann GM Jr, Marcuccilli CJ, Tryba AK, Cowan JD, van Gils SA, van Drongelen W. Modeling focal epileptic activity in the Wilson-Cowan model with depolarization block. J Math Neurosci. 2015;5:7. · Zbl 1357.92013 · doi:10.1186/s13408-015-0019-4
[41] Nauhaus I, Busse L, Carandini M, Ringach DL. Stimulus contrast modulates functional connectivity in visual cortex. Nat Neurosci. 2009;12(1):70-6. · doi:10.1038/nn.2232
[42] Nauhaus I, Busse L, Ringach DL, Carandini M. Robustness of traveling waves in ongoing activity of visual cortex. J Neurosci. 2012;32(9):3088-94. · doi:10.1523/JNEUROSCI.5827-11.2012
[43] Negahbani E, Steyn-Ross DA, Steyn-Ross ML, Wilson MT, Sleigh JW. Noise-induced precursors of state transitions in the stochastic Wilson-Cowan model. J Math Neurosci. 2015;5:9. · Zbl 1357.92015 · doi:10.1186/s13408-015-0021-x
[44] Ohira T, Cowan JD. Master-equation approach to stochastic neurodynamics. Phys Rev E. 1993;48(3):2259. · doi:10.1103/PhysRevE.48.2259
[45] Ohira, T.; Cowan, JD, Path integrals for stochastic neurodynamics (1994)
[46] Ohira T, Cowan JD. Stochastic single neurons. Neural Comput. 1995;7(3):518-28. · doi:10.1162/neco.1995.7.3.518
[47] Ohira, T.; Cowan, JD, Stochastic neurodynamics and the system size expansion, 290-294 (1997), Berlin · doi:10.1007/978-1-4615-6099-9_50
[48] Petitot J. The neurogeometry of pinwheels as a sub-Riemannian contact structure. J Physiol (Paris). 2003;97(2-3):265-309. · doi:10.1016/j.jphysparis.2003.10.010
[49] Sarti A, Citti G, Manfredini M. From neural oscillations to variational problems in the visual cortex. J Physiol (Paris). 2003;97(2-3):379-85. · doi:10.1016/j.jphysparis.2003.09.014
[50] Thomas PJ, Cowan JD. Symmetry induced coupling of cortical feature maps. Phys Rev Lett. 2004;92(18):188101. · doi:10.1103/PhysRevLett.92.188101
[51] Thomas PJ, Cowan JD. Simultaneous constraints on pre- and post-synaptic cells couple cortical feature maps in a 2D geometric model of orientation preference. Math Med Biol. 2006;23(2):119-38. · Zbl 1111.92011 · doi:10.1093/imammb/dql006
[52] Thomas PJ, Cowan JD. Generalized spin models for coupled cortical feature maps obtained by coarse graining correlation based synaptic learning rules. J Math Biol. 2012;65(2):1149-86. · Zbl 1311.92036 · doi:10.1007/s00285-011-0484-7
[53] Veltz R, Chossat P, Faugeras O. On the effects on cortical spontaneous activity of the symmetries of the network of pinwheels in visual area V1. J Math Neurosci. 2015;5(1):23. · Zbl 1357.92016 · doi:10.1186/s13408-015-0023-8
[54] Verduzco-Flores S. Stochastic synchronization in Purkinje cells with feedforward inhibition could be studied with equivalent phase-response curves. J Math Neurosci. 2015;5(1):25. · Zbl 1357.92017 · doi:10.1186/s13408-015-0025-6
[55] Wallace E, Benayoun M, van Drongelen W, Cowan JD. Emergent oscillations in networks of stochastic spiking neurons. PLoS ONE. 2011;6(5):e14804. · doi:10.1371/journal.pone.0014804
[56] Wei Y, Ullah G, Schiff SJ. Unification of neuronal spikes, seizures, and spreading depression. J Neurosci. 2014;34(35):11733-43. · doi:10.1523/JNEUROSCI.0516-14.2014
[57] Whitelaw VA, Cowan JD. Specificity and plasticity of retinotectal connections: a computational model. J Neurosci. 1981;1(12):1369-87.
[58] Wilson HR, Cowan JD. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J. 1972;12:1-24. · doi:10.1016/S0006-3495(72)86068-5
[59] Wilson HR, Cowan JD. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetic. 1973;13(2):55-80. · Zbl 0281.92003 · doi:10.1007/BF00288786
[60] Wolf F, Geisel T. Spontaneous pinwheel annihilation during visual development. Nature. 1998;395:73-8. · doi:10.1038/25736
[61] Yu S, Yang H, Nakahara H, Santos GS, Nikolić D, Plenz D. Higher-order interactions characterized in cortical activity. J Neurosci. 2011;31(48):17514-26. · doi:10.1523/JNEUROSCI.3127-11.2011
[62] Zweck J, Williams LR. Euclidean group invariant computation of stochastic completion fields using shiftable-twistable functions. J Math Imaging Vis. 2004;21:135-54. · Zbl 1002.92514 · doi:10.1023/B:JMIV.0000035179.47895.bc
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.