×

A fast time splitting finite difference approach to Gross-Pitaevskii equations. (English) Zbl 1473.65096

Summary: We propose an idea to solve the Gross-Pitaevskii equation for dark structures inside an infinite constant background density \(\rho_\infty=|\psi_\infty |^2\), without the introduction of artificial boundary conditions. We map the unbounded physical domain \(\mathbb{R}^3\) into the bounded domain \((-1,1)^3\) and discretize the rescaled equation by equispaced 4th-order finite differences. This results in a free boundary approach, which can be solved in time by the Strang splitting method. The linear part is solved by a new, fast approximation of the action of the matrix exponential at machine precision accuracy, while the nonlinear part can be solved exactly. Numerical results confirm existing ones based on the Fourier pseudospectral method and point out some weaknesses of the latter such as the need of a quite large computational domain, and thus a consequent critical computational effort, in order to provide reliable time evolution of the vortical structures, of their reconnections, and of integral quantities like mass, energy, and momentum. The free boundary approach reproduces them correctly, also in finite subdomains, at low computational cost. We show the versatility of this method by carrying out one- and three-dimensional simulations and by using it also in the case of Bose-Einstein condensates, for which \(\psi \to 0\) as the spatial variables tend to infinity.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs

Software:

INFFTM; GSGPEs; NLSEmagic
Full Text: DOI

References:

[1] D. G. Akhmetov. Vortex Rings. Springer-Verlag, Berlin Heidelberg, 1 edition, 2009. · Zbl 1179.76002
[2] A. H. Al-Mohy and N. J. Higham. A new scaling and squaring algorithm for the matrix exponential. SIAM J. Matrix Anal. Appl., 31(3):970-989, 2009. · Zbl 1194.15021
[3] W. Bao and Y. Cai. Mathematical theory and numerical methods for Bose-Einstein conden-sation. Kinet. Relat. Models, 6(1):1-135, 2013. · Zbl 1266.82009
[4] W. Bao, Q. Tang, and Z. Xu. Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation. J. Comput. Phys., 235:423-445, 2013. · Zbl 1291.35329
[5] C. F. Barenghi and N. G. Parker. A Primer on Quantum Fluids. Springer, 2016. · Zbl 1345.82001
[6] N. G. Berloff. Padé approximations of solitary wave solutions of the Gross-Pitaevskii equa-tion. J. Phys. A: Math. Gen., 37:1617-1632, 2004. · Zbl 1053.35120
[7] J. P. Boyd. Chebyshev and Fourier spectral methods. DOVER Publications, Inc., second edition, 2000.
[8] M. Caliari, G. Inverso, and L. M. Morato. Dissipation caused by a vorticity field and gener-ation of sigularities in Madelung fluid. New J. Phys., 6:69, 2004.
[9] M. Caliari, M. I. Loffredo, L. M. Morato, and S. Zuccher. Cubic nonlinear Schrödinger equa-tion with vorticity. New J. Phys., 10:123020, 2008.
[10] M. Caliari and S. Rainer. GSGPEs-v1.1: a MATLAB code for computing the ground state of systems of Gross-Pitaevskii equations. Comput. Phys. Commun., 247:106968, 2020. · Zbl 1302.35004
[11] M. Caliari and F. Zivcovich. On-the-fly backward error estimate for matrix exponential approximation by Taylor algorithm. J. Comput. Appl. Math., 346:532-548, 2019. · Zbl 1452.65082
[12] M. Caliari and S. Zuccher. INFFTM: Fast evaluation of 3d Fourier series in MATLAB with an application to quantum vortex reconnections. Comput. Phys. Commun., 213:197-207, 2017. · Zbl 1380.65454
[13] M. Caliari and S. Zuccher. Reliability of the time splitting Fourier method for singular solu-tions in quantum fluids. Comput. Phys. Commun., 222:46-58, 2018. · Zbl 07693033
[14] R. M. Caplan. NLSEmagic: Nonlinear Schrödinger equation multidimensional Matlab-based GPU-accelerated integrators using compact high-order schemes. Comput. Phys. Com-mun., 184(4):1250-1271, 2013.
[15] R. M. Caplan and R. Carretero-González. A modulus-squared Dirichlet boundary condition for time-dependent complex partial differential equations and its application to the nonlin-ear Schrödinger equation. SIAM J. Sci. Comput., 36(1):A1-A19, 2014. · Zbl 1290.65072
[16] C. M. Dion and E. Cancès. Spectral method for the time-dependent Gross-Pitaevskii equa-tion with a harmonic trap. Phys. Rev. E, 67:046706, 2003.
[17] J. Koplik and H. Levine. Vortex Reconnection in Superfluid Helium. Phys. Rev. Lett., 71(9):1375-1379, 1993.
[18] T. T. Lim and T. B. Nickels. Instability in the reconnection in the head-on collision of two vortex rings. Nature, 357:225-227, 1992.
[19] D. Proment, M. Onorato, and C. F. Barenghi. Vortex knots in a Bose-Einstein condensate. Phys. Rev. E, 85:036306, 2012.
[20] G. W. Rayfield and F. Reif. Quantized vortex rings in superfluid helium. Phys. Rev., 136:A1194-A1208, 1964.
[21] P. H. Roberts and N. G. Berloff. The nonlinear Schrödinger equation as a model of superflu-idity. In C. F. Barenghi, R. J. Donnelly, and W. F. Vinen, editors, Quantized Vortex Dynamics and Superfluid Turbulence, volume 571 of Lecture Notes in Physics, pages 235-257. Springer, Berlin Heidelberg, 2001. · Zbl 0994.82105
[22] P. H. Roberts and J. Grant. Motions in a Bose condensate. I. The structure of the large circular vortex. J. Phys. A: Gen. Phys., 4:55-72, 1971.
[23] M. W. Scheeler, D. Kleckner, D. Proment, G. L. Kindlmann, and W. T. M. Irvine. Helicity conservation by flow across scales in reconnecting vortex links and knots. Proc. Natl. Acad. Sci. USA, 111(43):15350-15355, 2014.
[24] I. S. Sullivan, J. J. Niemela, R. E. Hershberger, D. Bolster, and R. J. Donnelly. Dynamics of thin vortex rings. J. Fluid Mech., 609:319-347, 2008. · Zbl 1147.76011
[25] M. Thalhammer, M. Caliari, and C. Neuhauser. High-order time-splitting Hermite and Fourier spectral methods. J. Comput. Phys., 228(3):822-832, 2009. · Zbl 1158.65340
[26] Y. Zhang, W. Bao, and Q. Du. The dynamics and interaction of quantized vortices in Ginzburg-Landau-Schrödinger equations. SIAM J. Appl. Math., 67:1740-1775, 2007. · Zbl 1220.35165
[27] Y. Zhang, W. Bao, and Q. Du. Numerical simulation of vortex dynamics in Ginzburg-Landau-Schrdinger equation. Eur. J. Appl. Math., 18:607-630, 2007. · Zbl 1202.35311
[28] S. Zuccher and M. Caliari. Accurate numerical determination of a self-preserving quantum vortex ring. J. Phys. A: Math. Theor., 54(1):015301, 2021. · Zbl 1380.65454
[29] S. Zuccher, M. Caliari, A. W. Baggaley, and C. F. Barenghi. Quantum vortex reconnections. Phys. Fluids, 24(125108):1-21, 2012.
[30] S. Zuccher and R. L. Ricca. Relaxation of twist helicity in the cascade process of linked quantum vortices. Phys. Rev. E, 95:053109, 2017.
[31] S. Zuccher and R. L. Ricca. Momentum of vortex tangles by weighted area information. Phys. Rev. E, 100:011101(R), 2019.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.