×

Method for calculating multiwave scattering by layered anisotropic media. (English) Zbl 1524.74464

Summary: The method of transfer matrices of orders \(n=2\) and \(n=4\) is known from the theory of the propagation of light and elastic waves in layered media. The development of this matrix method is presented for cases \(n>4\). The transfer matrix \(\boldsymbol{T}\) of waves through a homogeneous layer of thickness \(d\) is defined as the matrix exponential \(\boldsymbol{T} = \exp (\boldsymbol{W}d)\). The elements of the matrix \(\boldsymbol{W}\) depend on the physical properties of the layer and are determined from the differential equations describing the waves. The matrix \(\boldsymbol{T}\) is calculated using the scaling and squaring method: \(\boldsymbol{T} = [\exp (\boldsymbol{W} d/(2^j))]^{2^j}\). A new way is proposed for choosing the scaling parameter \(m=2^j\), which provides the required accuracy in computing the elements of the matrix \(\boldsymbol{T}\). Two procedures for calculating the exponential of the scaled matrix \(\boldsymbol{A} =\boldsymbol{W} d /(2^j)\) are considered: 1) truncation of the Taylor series, 2) polynomial representation of the matrix exponential. Both of these methods do not require finding the eigenvalues of the matrix \(\boldsymbol{A}\). The effectiveness of these methods is compared. It is shown that when calculating the matrix exponential with double precision, the polynomial method is preferable for matrices of order \(n<10\). An alternative to multiple squaring for the cases \(j>n\) is proposed. The application of the scaling method is shown by the example of calculations of six-beam scattering of elastic waves by an anisotropic layer.

MSC:

74S99 Numerical and other methods in solid mechanics
65F60 Numerical computation of matrix exponential and similar matrix functions
15A16 Matrix exponential and similar functions of matrices
74J20 Wave scattering in solid mechanics
78A45 Diffraction, scattering
Full Text: DOI

References:

[1] Born, M.; Wolf, E., Principles of Optics (1964), Pergamon press: Pergamon press Oxford
[2] HandBook of Optics, Vol. 5 (2010), McGraw Hill: McGraw Hill New York
[3] Casey, H. C.; Panish, M. B., Heterostructure Lasers (1978), Academic: Academic N.Y
[4] Bulgakov, A. A.; Fedorin, I. V., Electrodynamic properties of a thin-film periodic structure in an external magnetic field, Tech. Phys., 56, 4, 510-514 (2011)
[5] Sannikov, D. G.; Zhirnov, S. V.; Sementsov, D. I., Magnetic polaritons at a superconductor-ferromagnet interface, Phys. Solid State, 51, 9, 1935-1940 (2009)
[6] Vostokov, N. V.; Shashkin, V. I., Admittance and nonlinear capacitance of a multilayer metal-semiconductor structure, Semiconductors, 42, 7, 783-787 (2008)
[7] Belyakov, V. A.; Sonin, A. S., Optics of Cholesteric Liquid Crystals (1982), Nauka: Nauka Moscow
[8] Chandrasekhar, S., Liquid Crystals (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0127.41403
[9] Joannopoulos, J. D.; Meade, R. D.; Winn, J. N., Photonic Crystals: Molding the Flow of Light (1995), Princ. Univ. Princeton · Zbl 1035.78500
[10] Sakoda, K., Optical Properties of Photonic Crystals (2001), Springer: Springer Berlin
[11] Bass, F. G.; Bulgakov, A. A.; Tetervov, A. P., High-Frequency Properties of Semiconductors with Superlattices (1989), Nauka: Nauka Moscow
[12] Herman, M. A., Semiconductor Superlattices (1986), Akademie-Verlag: Akademie-Verlag Berlin
[13] Gilbert, K. E., A propagator matrix method for periodically stratified media, J. Acoust. Soc. Am., 73, 137-142 (1983) · Zbl 0536.76097
[14] Golubev, V. G.; Dukin, A. A.; Medvedev, A. V.; Pevtsov, A. B.; Selkin, A. V.; Feoktistov, N. A., Amplitude-phase reflectance spectra of amorphous silicon-based Bragg structures, Phys. Solid State, 46, 10, 1815-1821 (2004)
[15] Joseph, L. M.; Craster, R. V., Reflection from a semi-infinite stack of layers using homogenization, Wave Motion, 54, 145-156 (2015) · Zbl 1454.74088
[16] Knittl, Z., Optics of Thin Films (1976), J. Wiley & Sons: J. Wiley & Sons London
[17] Kobayashi, F.; Biwa, S.; Ohno, N., Wave transmission characteristics in periodic media of finite length: multilayers and fiber arrays, Int. J. Solids Struct., 41, 7361-7375 (2004) · Zbl 1124.74312
[18] Rousseau, M., Floquet wave properties in a periodically layered, J. Acoust. Soc. Am., 86, 2369-2376 (1989)
[19] Usanov, D. A.; Skripal, A. V.; Abramov, A. V.; Bogolyubov, A. S., Determination of the metal nanometer layer thickness and semiconductor conductivity in metal-semiconductor structures from electromagnetic reflection and transmission spectra, Tech. Phys., 51, 5, 644-649 (2006)
[20] Sansone, G., Equazioni differenziali nel campo reale. Parte 1. Bologna (1948)
[21] Gantmacher, F. R., The Theory of Matrices (2000), AMS Chelsea Publishing: Reprinted by American Mathematical Society · Zbl 0085.01001
[22] Angot, A., Compléments de mathématiques a l’usage des ingénieurs de l’élektrotechnique et des télécommunications (1982), Masson: Masson Paris
[23] Abdulhalim, I., Analytic propagation matrix method for anisotropic magneto-optic layered media, J. Opt. A: : Pure Appl. Opt., 2, 557-564 (2000)
[24] Aki, K.; Richards, P. G., Quantitative Seismology (2002), University Science Books: University Science Books Sausalito
[25] Arzhannikov, A. V.; Kuznetsov, S. A., Methods for calculating the spectral properties of multilayer anisotropic structures based on crossed polarizing gratings, Tech. Phys., 46, 12, 1489-1493 (2001)
[26] Atkinson, R.; Kubrakov, N. F., Features of the simplest model of second-harmonic magneto-optical Kerr effects, Appl. Phys. B, 74, 7, 697-703 (2002)
[27] Gilbert, F.; Backus, G. E., Propagator matrices in elastic wave and vibration problems, Geophysics, 31, 326-332 (1966)
[28] Lin-Chung, P. J.; Teitler, S., 4 ×4 matrix formalisms for optics in stratified anisotropic media, J. Opt. Soc. Am. A., 1, 703-705 (1984)
[29] Schoenberg, M., Wave propagation in alternating fluid/solid layers, Wave Motion, 6, 303-320 (1984) · Zbl 0538.73060
[30] Wöhler, H.; Haas, G.; Fritsch, M.; Mlynski, D. A., Faster 4 ×4 matrix method for uniaxial inhomogeneous media, J. Opt. Soc. Am. A., 5, 1554-1557 (1988)
[31] Dieulesaint, E.; Royer, D., Ondes élastiques dans les solides. application au traitment du signal (1974), Masson: Masson Paris
[32] Henneke, E. G.I. I., Reflection-refraction of a stress wave at a plane boundary between anisotropic media, J. Acoust. Soc. Am., 51, 1, 210-217 (1972) · Zbl 0224.73028
[33] Sharma, M. D., Existence of longitudinal and transverse waves in anisotropic thermoelastic media, Acta Mech., 209, 275-283 (2010) · Zbl 1381.74111
[34] Guo, S. H., The thermo-electromagnetic waves in piezoelectric solids, Acta Mech., 219, 231-240 (2011) · Zbl 1304.74030
[35] N., Belyayev Yu., Transfer matrix of the sixth order. Days on Diffraction 2014, (Proc. of the Intern. Conf. (2014)), 37-42
[36] N., Belyayev Yu., Analytical solutions for multi-wave transfer matrices in layered structures, IOP Conf. Ser.: J. Phys.: Conf. Ser., 1092, Article 012008 pp. (2018)
[37] Schoenberg, M., Plane wave propagation in stratified anisotropic media, J. Acoust. Soc. Am., 55, 5, 922-925 (1974)
[38] Zhang, P.; Wei1, P.; Li, Y., Wave propagation through a micropolar slab sandwiched by two elastic half-spaces, J. Vib. Acoust., 138, Article 041008 pp. (2016)
[39] Higham, N. J., Functions of Matrices: Theory and Computation (2008), SIAM: SIAM Philadelphia · Zbl 1167.15001
[40] Moler, C.; Van Loan, C., Nineteen dubious ways to compute the exponential of matrix, Twenty-five years later, SIAM Rev., 45, 1, 3-49 (2003), 2003 · Zbl 1030.65029
[41] Ward, R. C., Numerical computation of the matrix exponential with accuracy estimate, SIAM J. Numer. Anal., 14, 600-610 (1977) · Zbl 0363.65031
[42] Caliari, M.; Zivcovich, F., On-the-fly backward error estimate for matrix exponential approximation by Taylor algorithm, J. Comput. Appl. Math., 346, 532-548 (2019) · Zbl 1452.65082
[43] Ruiz, P.; Sastre, J.; Ibánez, J.; Defez, E., High performance computing of the matrix exponential, J. Comput. Appl. Math., 291, 370-379 (2016) · Zbl 1329.65092
[44] Sastre, J.; Ibánez, J.; Defez, E.; Ruiz, P., New scaling-squaring taylor algorithms for computing the matrix exponential, SIAM J. Sci., 37, 1, A439-A455 (2015) · Zbl 1315.65046
[45] Higham, N. J., The scaling and squaring method for the matrix exponential revisited, SIAM Rev., 51, 747-764 (2009) · Zbl 1178.65040
[46] N., Belyayev Yu., On the calculation of functions of matrices, Math. Notes, 94, 177-184 (2013) · Zbl 1282.65053
[47] N., Belyayev Yu., Calculation of the six-beam diffraction in layered media using polynomials of principal minors, J. Theor. Comput. Acoust., 26, 2, Article 1850017 pp. (2018)
[48] Sirotin, Yu. I.; Shaskolskaya, M. P., Fundamentals of Crystallophysics (1979), Nauka: Nauka Moscow, (in Russian)
[49] Ewing, W. M.; Jardetzky, W. S.; Press, F., Elastic Waves in Layered Media (1957), McGraw-Hill Book Company: McGraw-Hill Book Company New York · Zbl 0083.23705
[50] N., Belyayev Yu., The method of polynomials of principal minors in calculations of acoustic stresses in an anisotropic layer, AIP Conf. Proc., 2053, Article 040008 pp. (2018)
[51] Beylkin, G.; Keizer, J. M.; Vozovoi, L., A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys., 147, 362-387 (1998) · Zbl 0924.65089
[52] Cox, S. M.; Matthews, P. C., Exponential time differencing for stiff systems, J. Comput. Phys., 176, 430-455 (2002) · Zbl 1005.65069
[53] Hochbruck, M.; Ostermann, A., Exponential integrators, Acta Numer., 19, 209-286 (2010) · Zbl 1242.65109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.