×

Tensor-train numerical integration of multivariate functions with singularities. (English) Zbl 1497.65062

Summary: Numerical integration is a classical problem emerging in many fields of science. Multivariate integration cannot be approached with classical methods due to the exponential growth of the number of quadrature nodes. We propose a method to overcome this problem. Tensor-train decomposition of a tensor approximating the integrand is constructed and used to evaluate a multivariate quadrature formula. We show how to deal with singularities in the integration domain and conduct theoretical analysis of the integration accuracy. The reference open-source implementation is provided.

MSC:

65D32 Numerical quadrature and cubature formulas
41A55 Approximate quadratures
41A63 Multidimensional problems
65D30 Numerical integration

References:

[1] Bogner, C.; Weinzierl, S., Resolution of singularities for multi-loop integrals, Comput. Phys. Commun., 178, 596-610 (2008) · Zbl 1196.81010 · doi:10.1016/j.cpc.2007.11.012
[2] Piessens, R.; de Doncker, E.; Uberhuber, C.; Kahaner, D., Quadpack: A Subroutine Package for Automatic Integration (1983), Berlin: Springer, Berlin · Zbl 0508.65005 · doi:10.1007/978-3-642-61786-7
[3] Lepage, G. P., A new algorithm for adaptive multidimensional integration, J. Comput. Phys., 27, 192-203 (1978) · Zbl 0377.65010 · doi:10.1016/0021-9991(78)90004-9
[4] G. P. Lepage, ‘‘VEGAS: An adaptive multi-dimensional integration routine,’’ Tech. Report No. CLNS-80/447 (Newman Labor. Nucl. Studies, Cornell Univ., Ithaca, NY, 1980).
[5] Press, W. H.; Farrar, G. R., Recursive stratified sampling for multidimensional Monte Carlo integration, Comput. Phys., 4, 190-195 (1990) · doi:10.1063/1.4822899
[6] Schürer, R., Monte Carlo and Quasi-Monte Carlo Methods 2002 (2004), Berlin: Springer, Berlin · Zbl 1042.65009 · doi:10.1007/978-3-642-18743-8_25
[7] Berntsen, J.; Espelid, T.; Genz, A., An adaptive algorithm for the approximate calculation of multiple integrals, ACM Trans. Math. Software, 17, 437-451 (1991) · Zbl 0900.65055 · doi:10.1145/210232.210233
[8] Dick, J.; Kuo, F. Y.; Sloan, I. H., High-dimensional integration: The quasi-Monte Carlo way, Acta Numer., 22, 133-288 (2013) · Zbl 1296.65004 · doi:10.1017/S0962492913000044
[9] Borowka, S.; Heinrich, G.; Jahn, S.; Jones, S. P.; Kerner, M.; Schlenk, J.; Zirke, T., pySecDec: A toolbox for the numerical evaluation of multi-scale integrals, Comput. Phys. Commun., 222, 313-326 (2018) · Zbl 07693053 · doi:10.1016/j.cpc.2017.09.015
[10] Borowka, S.; Heinrich, G.; Jahn, S.; Jones, S. P.; Kerner, M.; Schlenk, J., A GPU compatible quasi-Monte Carlo integrator interfaced to pySecDec, Comput. Phys. Commun., 240, 120-137 (2019) · Zbl 07674767 · doi:10.1016/j.cpc.2019.02.015
[11] Oseledets, I. V.; Tyrtyshnikov, E. E., TT-cross approximation for multidimensional arrays, Linear Algebra Appl., 432, 70-88 (2010) · Zbl 1183.65040 · doi:10.1016/j.laa.2009.07.024
[12] S. Dolgov and D. Savostyanov, ‘‘Parallel cross interpolation for high-precision calculation of high-dimensional integrals,’’ Comput. Phys. Commun. 246, 106869 (2020). https://doi.org/10.1016/j.cpc.2019.106869 · Zbl 07678425
[13] Oseledets, I. V., Tensor-train decomposition, SIAM J. Sci. Comput., 33, 2295-2317 (2011) · Zbl 1232.15018 · doi:10.1137/090752286
[14] Smirnov, A. V., FIESTA 4: Optimized Feynman integral calculations with GPU support, Comput. Phys. Comm., 204, 189-199 (2016) · Zbl 1378.65075 · doi:10.1016/j.cpc.2016.03.013
[15] Kahaner, D.; Moler, C.; Nash, S., Numerical Methods and Software (1989), Englewood Cliffs, CA: Prentice-Hall, Englewood Cliffs, CA · Zbl 0744.65002
[16] Tyrtyshnikov, E. E., A Brief Introduction to Numerical Analysis (2012), New York: Springer Science, New York · Zbl 0874.65001
[17] Protter, M. H.; Charles, B., Intermediate Calculus (2012), New York: Springer Science, New York · Zbl 0555.26002
[18] Goreinov, S. A.; Tyrtyshnikov, E. E., The maximal-volume concept in approximation by low-rank matrices, Contemp. Math., 208, 47-52 (2001) · Zbl 1003.15025 · doi:10.1090/conm/280/4620
[19] Goreinov, S. A.; Zamarashkin, N. L.; Tyrtyshnikov, E. E., Pseudo-skeleton approximations by matrices of maximal volume, Math. Notes, 62, 515-519 (1997) · Zbl 0916.65040 · doi:10.1007/bf02358985
[20] Civril, A.; Magdon-Ismail, M., On selecting a maximum volume sub-matrix of a matrix and related problems, Theor. Comput. Sci., 410, 4801-4811 (2009) · Zbl 1181.15002 · doi:10.1016/j.tcs.2009.06.018
[21] Bebendorf, M., Approximation of boundary element matrices, Numer. Math., 86, 565-589 (2000) · Zbl 0966.65094 · doi:10.1007/PL00005410
[22] Tyrtyshnikov, E. E., Incomplete cross approximation in the mosaic-skeleton method, Computing, 64, 367-380 (2000) · Zbl 0964.65048 · doi:10.1007/s006070070031
[23] Goreinov, S. A.; Oseledets, I. V.; Savostyanov, D. V.; Tyrtyshnikov, E. E.; Zamarashkin, N. L., Matrix Methods: Theory, Algorithms and Applications (2010), Singapore: World Scientific, Singapore · doi:10.1142/9789812836021_0015
[24] Kirkup, S. M.; Yazdani, J.; Papazafeiropoulos, G., Quadrature rules for functions with a mid-point logarithmic singularity in the boundary element method based on the \(x=t^p\), Am. J. Comput. Math., 09, 282-301 (2019) · doi:10.4236/ajcm.2019.94021
[25] M. Mori and M. Sugihara, ‘‘The double-exponential transformation in numerical analysis,’’ J. Comput. Appl. Math., 287-296 (2001). https://doi.org/10.1016/S0377-0427(00)00501-X · Zbl 0971.65015
[26] Hahn, T., Cuba — a library for multidimensional numerical integration, Comput. Phys. Commun., 168, 78-95 (2005) · Zbl 1196.65052 · doi:10.1016/j.cpc.2005.01.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.