×

Master integrals for mixed QCD-QED corrections to charged-current Drell-Yan production of a massive charged lepton. (English) Zbl 1522.81749

Summary: The master integrals for the mixed QCD-QED two-loop virtual corrections to the charged-current Drell-Yan process \(q\bar{q}^\prime\rightarrow\ell\nu\) are computed analytically by using the differential equation method. A suitable choice of master integrals makes it successful to cast the differential equation system into the canonical form. We keep the dependence on charged lepton mass in the building of differential equations and then expand the system against the ratio of small charged lepton mass to large \(W\)-boson mass. In such a way the final results will contain large logarithms of the form \(\log(m_\ell^2/m_W^2)\). Finally, all the canonical master integrals are given as Taylor series around \(d = 4\) spacetime dimensions up to order four, with coefficients expressed in terms of Goncharov polylogarithms up to weight four.

MSC:

81V10 Electromagnetic interaction; quantum electrodynamics
81V05 Strong interaction, including quantum chromodynamics
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81T18 Feynman diagrams
68W30 Symbolic computation and algebraic computation
81-08 Computational methods for problems pertaining to quantum theory

References:

[1] S.D. Drell and T.-M. Yan, Massive Lepton Pair Production in Hadron-Hadron Collisions at High-Energies, Phys. Rev. Lett.25 (1970) 316 [Erratum ibid.25 (1970) 902] [INSPIRE].
[2] ATLAS collaboration, Precision measurement and interpretation of inclusive W^+, W^−and Z/γ^*production cross sections with the ATLAS detector, Eur. Phys. J. C77 (2017) 367 [arXiv:1612.03016] [INSPIRE].
[3] ATLAS collaboration, Measurement of the W-boson mass in pp collisions at \(\sqrt{s} = 7\) TeV with the ATLAS detector, Eur. Phys. J. C78 (2018) 110 [Erratum ibid.78 (2018) 898] [arXiv:1701.07240] [INSPIRE].
[4] Camarda, S.; Cuth, J.; Schott, M., Determination of the muonic branching ratio of the W boson and its total width via cross-section measurements at the Tevatron and LHC, Eur. Phys. J. C, 76, 613 (2016) · doi:10.1140/epjc/s10052-016-4461-6
[5] ATLAS collaboration, Measurement of the forward-backward asymmetry of electron and muon pair-production in pp collisions at \(\sqrt{s} = 7\) TeV with the ATLAS detector, JHEP09 (2015) 049 [arXiv:1503.03709] [INSPIRE].
[6] CMS collaboration, Measurement of the weak mixing angle using the forward-backward asymmetry of Drell-Yan events in pp collisions at 8 TeV, Eur. Phys. J. C78 (2018) 701 [arXiv:1806.00863] [INSPIRE].
[7] CMS collaboration, Measurement of the differential cross section and charge asymmetry for inclusive pp → W^± + X production at \(\sqrt{s} = 8\) TeV, Eur. Phys. J. C76 (2016) 469 [arXiv:1603.01803] [INSPIRE].
[8] CMS collaboration, Measurements of the W boson rapidity, helicity, double-differential cross sections, and charge asymmetry in pp collisions at \(\sqrt{s} = 13\) TeV, Phys. Rev. D102 (2020) 092012 [arXiv:2008.04174] [INSPIRE].
[9] ATLAS collaboration, Search for new resonances in events with one lepton and missing transverse momentum in pp collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector, Phys. Lett. B762 (2016) 334 [arXiv:1606.03977] [INSPIRE].
[10] CMS collaboration, Search for heavy gauge W’ boson in events with an energetic lepton and large missing transverse momentum at \(\sqrt{s} = 13\) TeV, Phys. Lett. B770 (2017) 278 [arXiv:1612.09274] [INSPIRE].
[11] ATLAS collaboration, Search for a new heavy gauge boson resonance decaying into a lepton and missing transverse momentum in 36 fb^−1of pp collisions at \(\sqrt{s} = 13\) TeV with the ATLAS experiment, Eur. Phys. J. C78 (2018) 401 [arXiv:1706.04786] [INSPIRE].
[12] ATLAS collaboration, Search for a heavy charged boson in events with a charged lepton and missing transverse momentum from pp collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector, Phys. Rev. D100 (2019) 052013 [arXiv:1906.05609] [INSPIRE].
[13] ATLAS collaboration, Search for high-mass new phenomena in the dilepton final state using proton-proton collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector, Phys. Lett. B761 (2016) 372 [arXiv:1607.03669] [INSPIRE].
[14] CMS collaboration, Search for narrow resonances in dilepton mass spectra in proton-proton collisions at \(\sqrt{s} = 13\) TeV and combination with 8 TeV data, Phys. Lett. B768 (2017) 57 [arXiv:1609.05391] [INSPIRE].
[15] ATLAS collaboration, Search for high-mass dilepton resonances using 139 fb^−1of pp collision data collected at \(\sqrt{s} = 13\) TeV with the ATLAS detector, Phys. Lett. B796 (2019) 68 [arXiv:1903.06248] [INSPIRE].
[16] G. Altarelli, R.K. Ellis and G. Martinelli, Large Perturbative Corrections to the Drell-Yan Process in QCD, Nucl. Phys. B157 (1979) 461 [INSPIRE].
[17] T. Matsuura, S.C. van der Marck and W.L. van Neerven, The Calculation of the Second Order Soft and Virtual Contributions to the Drell-Yan Cross-Section, Nucl. Phys. B319 (1989) 570 [INSPIRE].
[18] R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order \({\alpha}_s^2\) correction to the Drell-Yan K-factor, Nucl. Phys. B359 (1991) 343 [Erratum ibid.644 (2002) 403] [INSPIRE].
[19] R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett.88 (2002) 201801 [hep-ph/0201206] [INSPIRE].
[20] C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D69 (2004) 094008 [hep-ph/0312266] [INSPIRE].
[21] K. Melnikov and F. Petriello, The W boson production cross section at the LHC through \(O( {\alpha}_s^2 )\), Phys. Rev. Lett.96 (2006) 231803 [hep-ph/0603182] [INSPIRE].
[22] K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through \(O( {\alpha}_s^2 )\), Phys. Rev. D74 (2006) 114017 [hep-ph/0609070] [INSPIRE].
[23] S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett.103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].
[24] Catani, S.; Ferrera, G.; Grazzini, M., W Boson Production at Hadron Colliders: The Lepton Charge Asymmetry in NNLO QCD, JHEP, 05, 006 (2010) · doi:10.1007/JHEP05(2010)006
[25] T. Ahmed, M. Mahakhud, N. Rana and V. Ravindran, Drell-Yan Production at Threshold to Third Order in QCD, Phys. Rev. Lett.113 (2014) 112002 [arXiv:1404.0366] [INSPIRE].
[26] T. Ahmed, M.K. Mandal, N. Rana and V. Ravindran, Rapidity Distributions in Drell-Yan and Higgs Productions at Threshold to Third Order in QCD, Phys. Rev. Lett.113 (2014) 212003 [arXiv:1404.6504] [INSPIRE].
[27] C. Duhr, F. Dulat and B. Mistlberger, Drell-Yan Cross Section to Third Order in the Strong Coupling Constant, Phys. Rev. Lett.125 (2020) 172001 [arXiv:2001.07717] [INSPIRE].
[28] Duhr, C.; Dulat, F.; Mistlberger, B., Charged current Drell-Yan production at N^3LO, JHEP, 11, 143 (2020) · doi:10.1007/JHEP11(2020)143
[29] Duhr, C.; Mistlberger, B., Lepton-pair production at hadron colliders at N^3LO in QCD, JHEP, 03, 116 (2022) · doi:10.1007/JHEP03(2022)116
[30] Camarda, S.; Cieri, L.; Ferrera, G., Drell-Yan lepton-pair production: q_Tresummation at N^3LL accuracy and fiducial cross sections at N^3LO, Phys. Rev. D, 104, L111503 (2021) · doi:10.1103/PhysRevD.104.L111503
[31] X. Chen, T. Gehrmann, N. Glover, A. Huss, T.-Z. Yang and H.X. Zhu, Dilepton Rapidity Distribution in Drell-Yan Production to Third Order in QCD, Phys. Rev. Lett.128 (2022) 052001 [arXiv:2107.09085] [INSPIRE].
[32] U. Baur, S. Keller and W.K. Sakumoto, QED radiative corrections to Z boson production and the forward backward asymmetry at hadron colliders, Phys. Rev. D57 (1998) 199 [hep-ph/9707301] [INSPIRE].
[33] U. Baur, O. Brein, W. Hollik, C. Schappacher and D. Wackeroth, Electroweak radiative corrections to neutral current Drell-Yan processes at hadron colliders, Phys. Rev. D65 (2002) 033007 [hep-ph/0108274] [INSPIRE].
[34] V.A. Zykunov, Radiative corrections to the Drell-Yan process at large dilepton invariant masses, Phys. Atom. Nucl.69 (2006) 1522 [INSPIRE].
[35] V.A. Zykunov, Weak radiative corrections to Drell-Yan process for large invariant mass of di-lepton pair, Phys. Rev. D75 (2007) 073019 [hep-ph/0509315] [INSPIRE].
[36] C.M. Carloni Calame, G. Montagna, O. Nicrosini and A. Vicini, Precision electroweak calculation of the production of a high transverse-momentum lepton pair at hadron colliders, JHEP10 (2007) 109 [arXiv:0710.1722] [INSPIRE].
[37] A. Arbuzov et al., One-loop corrections to the Drell-Yan process in SANC. (II). The Neutral current case, Eur. Phys. J. C54 (2008) 451 [arXiv:0711.0625] [INSPIRE].
[38] Dittmaier, S.; Huber, M., Radiative corrections to the neutral-current Drell-Yan process in the Standard Model and its minimal supersymmetric extension, JHEP, 01, 060 (2010) · Zbl 1269.81177 · doi:10.1007/JHEP01(2010)060
[39] D. Wackeroth and W. Hollik, Electroweak radiative corrections to resonant charged gauge boson production, Phys. Rev. D55 (1997) 6788 [hep-ph/9606398] [INSPIRE].
[40] U. Baur, S. Keller and D. Wackeroth, Electroweak radiative corrections to W boson production in hadronic collisions, Phys. Rev. D59 (1999) 013002 [hep-ph/9807417] [INSPIRE].
[41] S. Dittmaier and M. Krämer, Electroweak radiative corrections to W boson production at hadron colliders, Phys. Rev. D65 (2002) 073007 [hep-ph/0109062] [INSPIRE].
[42] U. Baur and D. Wackeroth, Electroweak radiative corrections to \(p\overline{p} → W\)^± → ℓ^±ν beyond the pole approximation, Phys. Rev. D70 (2004) 073015 [hep-ph/0405191] [INSPIRE].
[43] A. Arbuzov et al., One-loop corrections to the Drell-Yan process in SANC. I. The Charged current case, Eur. Phys. J. C46 (2006) 407 [Erratum ibid.50 (2007) 505] [hep-ph/0506110] [INSPIRE].
[44] C.M. Carloni Calame, G. Montagna, O. Nicrosini and A. Vicini, Precision electroweak calculation of the charged current Drell-Yan process, JHEP12 (2006) 016 [hep-ph/0609170] [INSPIRE].
[45] S. Brensing, S. Dittmaier, M. Krämer and A. Muck, Radiative corrections to W^−boson hadroproduction: Higher-order electroweak and supersymmetric effects, Phys. Rev. D77 (2008) 073006 [arXiv:0710.3309] [INSPIRE].
[46] Alioli, S., Precision studies of observables in pp → W → lν_land pp → γ, Z → l^+l^−processes at the LHC, Eur. Phys. J. C, 77, 280 (2017) · doi:10.1140/epjc/s10052-017-4832-7
[47] y S. Alioli, C.W. Bauer, C. Berggren, F.J. Tackmann and J.R. Walsh, Drell-Yan production at NNLL’+NNLO matched to parton showers, Phys. Rev. D92 (2015) 094020 [arXiv:1508.01475] [INSPIRE].
[48] Alioli, S.; Bauer, CW; Guns, S.; Tackmann, FJ, Underlying event sensitive observables in Drell-Yan production using GENEVA, Eur. Phys. J. C, 76, 614 (2016) · doi:10.1140/epjc/s10052-016-4458-1
[49] S. Camarda et al., DYTurbo: Fast predictions for Drell-Yan processes, Eur. Phys. J. C80 (2020) 251 [Erratum ibid.80 (2020) 440] [arXiv:1910.07049] [INSPIRE].
[50] Boughezal, R., Color singlet production at NNLO in MCFM, Eur. Phys. J. C, 77, 7 (2017) · doi:10.1140/epjc/s10052-016-4558-y
[51] Grazzini, M.; Kallweit, S.; Wiesemann, M., Fully differential NNLO computations with MATRIX, Eur. Phys. J. C, 78, 537 (2018) · doi:10.1140/epjc/s10052-018-5771-7
[52] Monni, PF; Nason, P.; Re, E.; Wiesemann, M.; Zanderighi, G., MiNNLO_PS: a new method to match NNLO QCD to parton showers, JHEP, 05, 143 (2020) · doi:10.1007/JHEP05(2020)143
[53] Alekhin, S.; Kardos, A.; Moch, S.; Trócsányi, Z., Precision studies for Drell-Yan processes at NNLO, Eur. Phys. J. C, 81, 573 (2021) · doi:10.1140/epjc/s10052-021-09361-9
[54] D. de Florian, M. Der and I. Fabre, QCD QED NNLO corrections to Drell-Yan production, Phys. Rev. D98 (2018) 094008 [arXiv:1805.12214] [INSPIRE].
[55] Delto, M.; Jaquier, M.; Melnikov, K.; Röntsch, R., Mixed QCD ⨂ QED corrections to on-shell Z boson production at the LHC, JHEP, 01, 043 (2020) · doi:10.1007/JHEP01(2020)043
[56] Cieri, L.; de Florian, D.; Der, M.; Mazzitelli, J., Mixed QCD ⨂ QED corrections to exclusive Drell-Yan production using the q_T-subtraction method, JHEP, 09, 155 (2020) · doi:10.1007/JHEP09(2020)155
[57] R. Bonciani, F. Buccioni, N. Rana, I. Triscari and A. Vicini, NNLO QCD × EW corrections to Z production in the \(q\overline{q}\) channel, Phys. Rev. D101 (2020) 031301 [arXiv:1911.06200] [INSPIRE].
[58] F. Buccioni, F. Caola, M. Delto, M. Jaquier, K. Melnikov and R. Röntsch, Mixed QCD-electroweak corrections to on-shell Z production at the LHC, Phys. Lett. B811 (2020) 135969 [arXiv:2005.10221] [INSPIRE].
[59] R. Bonciani, F. Buccioni, N. Rana and A. Vicini, Next-to-Next-to-Leading Order Mixed QCD-Electroweak Corrections to on-Shell Z Production, Phys. Rev. Lett.125 (2020) 232004 [arXiv:2007.06518] [INSPIRE].
[60] A. Behring et al., Mixed QCD-electroweak corrections to W-boson production in hadron collisions, Phys. Rev. D103 (2021) 013008 [arXiv:2009.10386] [INSPIRE].
[61] S. Dittmaier, T. Schmidt and J. Schwarz, Mixed NNLO QCD-electroweak corrections of \(\mathcal{O} \)(N_fα_sα) to single-W/Z production at the LHC, JHEP12 (2020) 201 [arXiv:2009.02229] INSPIRE].
[62] S. Dittmaier, A. Huss and C. Schwinn, Mixed QCD-electroweak \(\mathcal{O} \)(α_sα) corrections to Drell-Yan processes in the resonance region: pole approximation and non-factorizable corrections, Nucl. Phys. B885 (2014) 318 [arXiv:1403.3216] [INSPIRE]. · Zbl 1323.81104
[63] Dittmaier, S.; Huss, A.; Schwinn, C., Dominant mixed QCD-electroweak O(α_sα) corrections to Drell-Yan processes in the resonance region, Nucl. Phys. B, 904, 216 (2016) · Zbl 1332.81240 · doi:10.1016/j.nuclphysb.2016.01.006
[64] L. Buonocore, M. Grazzini, S. Kallweit, C. Savoini and F. Tramontano, Mixed QCD-EW corrections to pp → ℓν_ℓ + X at the LHC, Phys. Rev. D103 (2021) 114012 [arXiv:2102.12539] [INSPIRE].
[65] Bonciani, R.; Di Vita, S.; Mastrolia, P.; Schubert, U., Two-Loop Master Integrals for the mixed EW-QCD virtual corrections to Drell-Yan scattering, JHEP, 09, 091 (2016) · doi:10.1007/JHEP09(2016)091
[66] von Manteuffel, A.; Schabinger, RM, Numerical Multi-Loop Calculations via Finite Integrals and One-Mass EW-QCD Drell-Yan Master Integrals, JHEP, 04, 129 (2017) · doi:10.1007/JHEP04(2017)129
[67] M. Heller, A. von Manteuffel and R.M. Schabinger, Multiple polylogarithms with algebraic arguments and the two-loop EW-QCD Drell-Yan master integrals, Phys. Rev. D102 (2020) 016025 [arXiv:1907.00491] [INSPIRE].
[68] M. Heller, A. von Manteuffel, R.M. Schabinger and H. Spiesberger, Mixed EW-QCD two-loop amplitudes for \(q\overline{q} \) → ℓ^+ℓ^−and γ_5scheme independence of multi-loop corrections, JHEP05 (2021) 213 [arXiv:2012.05918] [INSPIRE].
[69] Armadillo, T.; Bonciani, R.; Devoto, S.; Rana, N.; Vicini, A., Two-loop mixed QCD-EW corrections to neutral current Drell-Yan, JHEP, 05, 072 (2022) · doi:10.1007/JHEP05(2022)072
[70] R. Bonciani et al., Mixed Strong-Electroweak Corrections to the Drell-Yan Process, Phys. Rev. Lett.128 (2022) 012002 [arXiv:2106.11953] [INSPIRE].
[71] Buccioni, F., Mixed QCD-electroweak corrections to dilepton production at the LHC in the high invariant mass region, JHEP, 06, 022 (2022) · doi:10.1007/JHEP06(2022)022
[72] T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys.3 (1962) 650 [INSPIRE]. · Zbl 0118.44501
[73] T.D. Lee and M. Nauenberg, Degenerate Systems and Mass Singularities, Phys. Rev.133 (1964) B1549 [INSPIRE].
[74] Hasan, SM; Schubert, U., Master Integrals for the mixed QCD-QED corrections to the Drell-Yan production of a massive lepton pair, JHEP, 11, 107 (2020) · doi:10.1007/JHEP11(2020)107
[75] D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: A Graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun.180 (2009) 1709 [arXiv:0811.4113] [INSPIRE]. · Zbl 07872412
[76] K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B192 (1981) 159 [INSPIRE].
[77] A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B254 (1991) 158 [INSPIRE]. · Zbl 1020.81734
[78] Remiddi, E., Differential equations for Feynman graph amplitudes, Nuovo Cim. A, 110, 1435 (1997) · doi:10.1007/BF03185566
[79] Maierhöfer, P.; Usovitsch, J.; Uwer, P., Kira — A Feynman integral reduction program, Comput. Phys. Commun., 230, 99 (2018) · Zbl 1498.81004 · doi:10.1016/j.cpc.2018.04.012
[80] J. Klappert, F. Lange, P. Maierhöfer and J. Usovitsch, Integral reduction with Kira 2.0 and finite field methods, Comput. Phys. Commun.266 (2021) 108024 [arXiv:2008.06494] [INSPIRE]. · Zbl 1523.81078
[81] Laporta, S., High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A, 15, 5087 [hep-ph/0102033] [INSPIRE] (2000) · Zbl 0973.81082
[82] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
[83] R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser.523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
[84] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].
[85] A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE]. · Zbl 0919.11080
[86] Goncharov, AB, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett., 5, 497 (1998) · Zbl 0961.11040 · doi:10.4310/MRL.1998.v5.n4.a7
[87] D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun.174 (2006) 222 [hep-ph/0507152] [INSPIRE]. · Zbl 1196.68330
[88] D. Maître, Extension of HPL to complex arguments, Comput. Phys. Commun.183 (2012) 846 [hep-ph/0703052] [INSPIRE].
[89] Duhr, C.; Dulat, F., PolyLogTools — polylogs for the masses, JHEP, 08, 135 (2019) · doi:10.1007/JHEP08(2019)135
[90] C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput.33 (2002) 1 [cs/0004015]. · Zbl 1017.68163
[91] J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun.167 (2005) 177 [hep-ph/0410259] [INSPIRE]. · Zbl 1196.65045
[92] Mastrolia, P.; Passera, M.; Primo, A.; Schubert, U., Master integrals for the NNLO virtual corrections to μe scattering in QED: the planar graphs, JHEP, 11, 198 (2017) · doi:10.1007/JHEP11(2017)198
[93] Borowka, S., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals, Comput. Phys. Commun., 222, 313 (2018) · Zbl 07693053 · doi:10.1016/j.cpc.2017.09.015
[94] Borowka, S.; Heinrich, G.; Jahn, S.; Jones, SP; Kerner, M.; Schlenk, J., A GPU compatible quasi-Monte Carlo integrator interfaced to pySecDec, Comput. Phys. Commun., 240, 120 (2019) · Zbl 07674767 · doi:10.1016/j.cpc.2019.02.015
[95] Gehrmann, T.; von Manteuffel, A.; Tancredi, L.; Weihs, E., The two-loop master integrals for \(q\overline{q} \)→ VV, JHEP, 06, 032 (2014) · doi:10.1007/JHEP06(2014)032
[96] Panzer, E., Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun., 188, 148 (2015) · Zbl 1344.81024 · doi:10.1016/j.cpc.2014.10.019
[97] Pak, A.; Smirnov, A., Geometric approach to asymptotic expansion of Feynman integrals, Eur. Phys. J. C, 71, 1626 (2011) · doi:10.1140/epjc/s10052-011-1626-1
[98] Jantzen, B.; Smirnov, AV; Smirnov, VA, Expansion by regions: revealing potential and Glauber regions automatically, Eur. Phys. J. C, 72, 2139 (2012) · doi:10.1140/epjc/s10052-012-2139-2
[99] Smirnov, AV, FIESTA4: Optimized Feynman integral calculations with GPU support, Comput. Phys. Commun., 204, 189 (2016) · Zbl 1378.65075 · doi:10.1016/j.cpc.2016.03.013
[100] A.V. Smirnov, N.D. Shapurov and L.I. Vysotsky, FIESTA5: Numerical high-performance Feynman integral evaluation, Comput. Phys. Commun.277 (2022) 108386 [arXiv:2110.11660] [INSPIRE]. · Zbl 1522.81097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.