×

A high-precision result for a full-color three-loop three-point form factor in \(\mathcal{N} = 4\) SYM. (English) Zbl 07837575

Summary: We perform a high-precision computation of the three-loop three-point form factor of the stress-tensor supermultiplet in \(\mathcal{N} = 4\) SYM. Both the leading-color and sub-leading-color form factors are expanded in terms of simple integrals. We compute the complete set of integrals at a special kinematic point with very high precision using AMFlow. The high-precision leading-color result enables us to obtain the analytic form of a numerical constant in the three-loop BDS ansatz, which is previously known only numerically. The high-precision values of the non-leading-color finite remainder as well as all integrals are also presented, which can be valuable for future use.

MSC:

81-XX Quantum theory

References:

[1] G. Lin, G. Yang and S. Zhang, Three-loop color-kinematics duality: a 24-dimensional solution space induced by new generalized gauge transformations, Phys. Rev. Lett.127 (2021) 171602 [arXiv:2106.05280] [INSPIRE].
[2] Lin, G.; Yang, G.; Zhang, S., Full-color three-loop three-point form factors in N = 4 SYM, JHEP, 03, 061, 2022 · Zbl 1522.81644 · doi:10.1007/JHEP03(2022)061
[3] Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
[4] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett.105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].
[5] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B425 (1994) 217 [hep-ph/9403226] [INSPIRE]. · Zbl 1049.81644
[6] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B435 (1995) 59 [hep-ph/9409265] [INSPIRE].
[7] Britto, R.; Cachazo, F.; Feng, B., Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B, 725, 275, 2005 · Zbl 1178.81202 · doi:10.1016/j.nuclphysb.2005.07.014
[8] Di Vita, S.; Mastrolia, P.; Schubert, U.; Yundin, V., Three-loop master integrals for ladder-box diagrams with one massive leg, JHEP, 09, 148, 2014 · doi:10.1007/JHEP09(2014)148
[9] Canko, DD; Syrrakos, N., Planar three-loop master integrals for 2 → 2 processes with one external massive particle, JHEP, 04, 134, 2022 · doi:10.1007/JHEP04(2022)134
[10] Henn, JM; Lim, J.; Torres Bobadilla, WJ, First look at the evaluation of three-loop non-planar Feynman diagrams for Higgs plus jet production, JHEP, 05, 026, 2023 · doi:10.1007/JHEP05(2023)026
[11] Smirnov, AV, FIESTA4: optimized Feynman integral calculations with GPU support, Comput. Phys. Commun., 204, 189, 2016 · Zbl 1378.65075 · doi:10.1016/j.cpc.2016.03.013
[12] Borowka, S., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals, Comput. Phys. Commun., 222, 313, 2018 · Zbl 07693053 · doi:10.1016/j.cpc.2017.09.015
[13] Liu, X.; Ma, Y-Q; Wang, C-Y, A systematic and efficient method to compute multi-loop master integrals, Phys. Lett. B, 779, 353, 2018 · doi:10.1016/j.physletb.2018.02.026
[14] Liu, X.; Ma, Y-Q, Multiloop corrections for collider processes using auxiliary mass flow, Phys. Rev. D, 105, L051503, 2022 · doi:10.1103/PhysRevD.105.L051503
[15] Z.-F. Liu and Y.-Q. Ma, Determining Feynman integrals with only input from linear algebra, Phys. Rev. Lett.129 (2022) 222001 [arXiv:2201.11637] [INSPIRE].
[16] X. Liu and Y.-Q. Ma, AMFlow: a Mathematica package for Feynman integrals computation via auxiliary mass flow, Comput. Phys. Commun.283 (2023) 108565 [arXiv:2201.11669] [INSPIRE]. · Zbl 07693415
[17] Dixon, LJ; McLeod, AJ; Wilhelm, M., A three-point form factor through five loops, JHEP, 04, 147, 2021 · doi:10.1007/JHEP04(2021)147
[18] Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D72 (2005) 085001 [hep-th/0505205] [INSPIRE].
[19] M. Spradlin, A. Volovich and C. Wen, Three-loop leading singularities and BDS ansatz for five particles, Phys. Rev. D78 (2008) 085025 [arXiv:0808.1054] [INSPIRE].
[20] Eden, B.; Heslop, P.; Korchemsky, GP; Sokatchev, E., The super-correlator/super-amplitude duality: part I, Nucl. Phys. B, 869, 329, 2013 · Zbl 1262.81196 · doi:10.1016/j.nuclphysb.2012.12.015
[21] Brandhuber, A., Harmony of super form factors, JHEP, 10, 046, 2011 · Zbl 1303.81111 · doi:10.1007/JHEP10(2011)046
[22] X. Liu and Y.-Q. Ma, Determining arbitrary Feynman integrals by vacuum integrals, Phys. Rev. D99 (2019) 071501 [arXiv:1801.10523] [INSPIRE].
[23] X. Guan, X. Liu and Y.-Q. Ma, Complete reduction of integrals in two-loop five-light-parton scattering amplitudes, Chin. Phys. C44 (2020) 093106 [arXiv:1912.09294] [INSPIRE].
[24] Blade: block-triangular form improved Feynman integral decomposition GitLab repository, https://gitlab.com/multiloop-pku/blade.
[25] G. Lin and G. Yang, Double copy of form factors and Higgs amplitudes: a mechanism for turning spurious poles in Yang-Mills theory into physical poles in gravity, Phys. Rev. Lett.129 (2022) 251601 [arXiv:2111.12719] [INSPIRE].
[26] Brandhuber, A.; Spence, B.; Travaglini, G.; Yang, G., Form factors in N = 4 super Yang-Mills and periodic Wilson loops, JHEP, 01, 134, 2011 · Zbl 1214.81146 · doi:10.1007/JHEP01(2011)134
[27] Brandhuber, A.; Travaglini, G.; Yang, G., Analytic two-loop form factors in N = 4 SYM, JHEP, 05, 082, 2012 · Zbl 1348.81400 · doi:10.1007/JHEP05(2012)082
[28] L.J. Dixon, O. Gurdogan, A.J. McLeod and M. Wilhelm, Folding amplitudes into form factors: an antipodal duality, Phys. Rev. Lett.128 (2022) 111602 [arXiv:2112.06243] [INSPIRE].
[29] Gehrmann, T.; Henn, JM; Huber, T., The three-loop form factor in N = 4 super Yang-Mills, JHEP, 03, 101, 2012 · Zbl 1309.81159 · doi:10.1007/JHEP03(2012)101
[30] O. Almelid, C. Duhr and E. Gardi, Three-loop corrections to the soft anomalous dimension in multileg scattering, Phys. Rev. Lett.117 (2016) 172002 [arXiv:1507.00047] [INSPIRE].
[31] Ellis, JR; Gaillard, MK; Nanopoulos, DV, A phenomenological profile of the Higgs boson, Nucl. Phys. B, 106, 292, 1976 · doi:10.1016/0550-3213(76)90184-X
[32] Georgi, HM; Glashow, SL; Machacek, ME; Nanopoulos, DV, Higgs bosons from two gluon annihilation in proton proton collisions, Phys. Rev. Lett., 40, 692, 1978 · doi:10.1103/PhysRevLett.40.692
[33] F. Wilczek, Decays of heavy vector mesons into Higgs particles, Phys. Rev. Lett.39 (1977) 1304 [INSPIRE].
[34] Shifman, MA; Vainshtein, AI; Voloshin, MB; Zakharov, VI, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys., 30, 711, 1979
[35] B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C69 (1995) 77 [hep-ph/9505225] [INSPIRE].
[36] Gehrmann, T.; Jaquier, M.; Glover, EWN; Koukoutsakis, A., Two-loop QCD corrections to the helicity amplitudes for H → 3 partons, JHEP, 02, 056, 2012 · Zbl 1309.81327 · doi:10.1007/JHEP02(2012)056
[37] A.V. Kotikov and L.N. Lipatov, DGLAP and BFKL equations in the N = 4 supersymmetric gauge theory, Nucl. Phys. B661 (2003) 19 [Erratum ibid.685 (2004) 405] [hep-ph/0208220] [INSPIRE]. · Zbl 1040.81062
[38] Kotikov, AV; Lipatov, LN; Onishchenko, AI; Velizhanin, VN, Three loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett. B, 595, 521, 2004 · Zbl 1247.81486 · doi:10.1016/j.physletb.2004.05.078
[39] Kotikov, AV, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett. B, 254, 158, 1991 · doi:10.1016/0370-2693(91)90413-K
[40] Remiddi, E., Differential equations for Feynman graph amplitudes, Nuovo Cim. A, 110, 1435, 1997 · doi:10.1007/BF03185566
[41] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].
[42] Lee, RN, Reducing differential equations for multiloop master integrals, JHEP, 04, 108, 2015 · Zbl 1388.81109 · doi:10.1007/JHEP04(2015)108
[43] Moriello, F., Generalised power series expansions for the elliptic planar families of Higgs + jet production at two loops, JHEP, 01, 150, 2020 · doi:10.1007/JHEP01(2020)150
[44] M. Hidding, DiffExp, a Mathematica package for computing Feynman integrals in terms of one-dimensional series expansions, Comput. Phys. Commun.269 (2021) 108125 [arXiv:2006.05510] [INSPIRE]. · Zbl 1518.65150
[45] T. Armadillo et al., Evaluation of Feynman integrals with arbitrary complex masses via series expansions, Comput. Phys. Commun.282 (2023) 108545 [arXiv:2205.03345] [INSPIRE]. · Zbl 1523.81077
[46] Chen, W.; Luo, M-X; Yang, T-Z; Zhu, HX, Soft theorem to three loops in QCD and N = 4 super Yang-Mills theory, JHEP, 01, 131, 2024 · Zbl 07821614 · doi:10.1007/JHEP01(2024)131
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.