×

Analytic continuation and numerical evaluation of the kite integral and the equal mass sunrise integral. (English) Zbl 1373.81293

Summary: We study the analytic continuation of Feynman integrals from the kite family, expressed in terms of elliptic generalisations of (multiple) polylogarithms. Expressed in this way, the Feynman integrals are functions of two periods of an elliptic curve. We show that all what is required is just the analytic continuation of these two periods. We present an explicit formula for the two periods for all values of \(t \in \mathbb{R}\). Furthermore, the nome \(q\) of the elliptic curve satisfies over the complete range in \(t\) the inequality \(| q | \leq 1\), where \(| q | = 1\) is attained only at the singular points \(t \in \{m^2, 9 m^2, \infty \}\). This ensures the convergence of the \( q\)-series expansion of the ELi-functions and provides a fast and efficient evaluation of these Feynman integrals.

MSC:

81T18 Feynman diagrams
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
11G55 Polylogarithms and relations with \(K\)-theory
14H52 Elliptic curves

Software:

DLMF

References:

[1] Goncharov, A. B., Math. Res. Lett., 5, 497 (1998) · Zbl 0961.11040
[2] Goncharov, A. B. (2001)
[3] Borwein, J. M.; Bradley, D. M.; Broadhurst, D. J.; Lisonek, P., Trans. Am. Math. Soc., 353, 3, 907 (2001) · Zbl 1002.11093
[4] Moch, S.; Uwer, P.; Weinzierl, S., J. Math. Phys., 43, 3363 (2002) · Zbl 1060.33007
[5] Vollinga, J.; Weinzierl, S., Comput. Phys. Commun., 167, 177 (2005) · Zbl 1196.65045
[6] Gehrmann, T.; Remiddi, E., Comput. Phys. Commun., 141, 296 (2001) · Zbl 0991.65022
[7] Gehrmann, T.; Remiddi, E., Comput. Phys. Commun., 144, 200 (2002) · Zbl 1001.65020
[8] Maitre, D., Comput. Phys. Commun., 174, 222 (2006) · Zbl 1196.68330
[9] Maitre, D., Comput. Phys. Commun., 183, 846 (2012)
[10] Frellesvig, H.; Tommasini, D.; Wever, C., J. High Energy Phys., 03, Article 189 pp. (2016)
[11] Broadhurst, D. J.; Fleischer, J.; Tarasov, O., Z. Phys. C, 60, 287 (1993)
[12] Berends, F. A.; Buza, M.; Böhm, M.; Scharf, R., Z. Phys. C, 63, 227 (1994)
[13] Bauberger, S.; Böhm, M.; Weiglein, G.; Berends, F. A.; Buza, M., Nucl. Phys. B, Proc. Suppl., 37B, 95 (1994)
[14] Bauberger, S.; Berends, F. A.; Böhm, M.; Buza, M., Nucl. Phys. B, 434, 383 (1995)
[15] Bauberger, S.; Böhm, M., Nucl. Phys. B, 445, 25 (1995)
[16] Caffo, M.; Czyz, H.; Laporta, S.; Remiddi, E., Nuovo Cimento A, 111, 365 (1998)
[17] Laporta, S.; Remiddi, E., Nucl. Phys. B, 704, 349 (2005) · Zbl 1119.81356
[18] Kniehl, B. A.; Kotikov, A. V.; Onishchenko, A.; Veretin, O., Nucl. Phys. B, 738, 306 (2006) · Zbl 1109.81331
[19] Groote, S.; Körner, J. G.; Pivovarov, A. A., Ann. Phys., 322, 2374 (2007) · Zbl 1148.81020
[20] Groote, S.; Körner, J.; Pivovarov, A., Eur. Phys. J. C, 72, 2085 (2012)
[21] Bailey, D. H.; Borwein, J. M.; Broadhurst, D.; Glasser, M. L., J. Phys. A, 41, Article 205203 pp. (2008) · Zbl 1152.33003
[22] Müller-Stach, S.; Weinzierl, S.; Zayadeh, R., Commun. Number Theory Phys., 6, 203 (2012) · Zbl 1275.81069
[23] Adams, L.; Bogner, C.; Weinzierl, S., J. Math. Phys., 54, Article 052303 pp. (2013) · Zbl 1282.81193
[24] Bloch, S.; Vanhove, P., J. Number Theory, 148, 328 (2015) · Zbl 1319.81044
[25] Adams, L.; Bogner, C.; Weinzierl, S., J. Math. Phys., 55, Article 102301 pp. (2014) · Zbl 1298.81204
[26] Adams, L.; Bogner, C.; Weinzierl, S., J. Math. Phys., 56, Article 072303 pp. (2015) · Zbl 1320.81059
[27] Adams, L.; Bogner, C.; Weinzierl, S., J. Math. Phys., 57, Article 032304 pp. (2016) · Zbl 1333.81283
[28] Bloch, S.; Kerr, M.; Vanhove, P. (2016)
[29] Adams, L.; Weinzierl, S. (2017)
[30] Remiddi, E.; Tancredi, L., Nucl. Phys. B, 880, 343 (2014) · Zbl 1284.81139
[31] Sabry, A., Nucl. Phys., 33, 401 (1962) · Zbl 0107.22904
[32] Remiddi, E.; Tancredi, L., Nucl. Phys. B, 907, 400 (2016) · Zbl 1336.81038
[33] Adams, L.; Bogner, C.; Schweitzer, A.; Weinzierl, S., J. Math. Phys., 57, Article 122302 pp. (2016) · Zbl 1353.81097
[34] Bloch, S.; Kerr, M.; Vanhove, P., Compos. Math., 151, 2329 (2015) · Zbl 1365.81090
[35] Primo, A.; Tancredi, L. (2017)
[36] Bonciani, R., J. High Energy Phys., 12, Article 096 pp. (2016)
[37] von Manteuffel, A.; Tancredi, L. (2017)
[38] Bloch, S.; Esnault, H.; Kreimer, D., Commun. Math. Phys., 267, 181 (2006) · Zbl 1109.81059
[39] Bogner, C.; Weinzierl, S., J. Math. Phys., 50, Article 042302 pp. (2009) · Zbl 1214.81096
[40] Passarino, G., Eur. Phys. J. C, 77, 77 (2017)
[41] Nagy, Z.; Soper, D. E., J. High Energy Phys., 09, Article 055 pp. (2003)
[42] Anastasiou, C.; Beerli, S.; Daleo, A., J. High Energy Phys., 05, Article 071 pp. (2007)
[43] Gong, W.; Nagy, Z.; Soper, D. E., Phys. Rev. D, 79, Article 033005 pp. (2009)
[44] Becker, S.; Reuschle, C.; Weinzierl, S., J. High Energy Phys., 12, Article 013 pp. (2010) · Zbl 1294.81267
[45] Becker, S.; Reuschle, C.; Weinzierl, S., J. High Energy Phys., 1207, Article 090 pp. (2012)
[46] Becker, S.; Weinzierl, S., Phys. Rev. D, 86, Article 074009 pp. (2012)
[47] Becker, S.; Weinzierl, S., Eur. Phys. J. C, 73, 2321 (2013)
[48] Catani, S.; Gleisberg, T.; Krauss, F.; Rodrigo, G.; Winter, J.-C., J. High Energy Phys., 0809, Article 065 pp. (2008)
[49] Hernandez-Pinto, R. J.; Sborlini, G. F.R.; Rodrigo, G., J. High Energy Phys., 02, Article 044 pp. (2016) · Zbl 1388.81329
[50] Buchta, S.; Chachamis, G.; Draggiotis, P.; Rodrigo, G., Eur. Phys. J. C, 77, 274 (2017)
[51] Sborlini, G. F.R.; Driencourt-Mangin, F.; Hernandez-Pinto, R.; Rodrigo, G., J. High Energy Phys., 08, Article 160 pp. (2016)
[52] Binoth, T.; Heinrich, G., Nucl. Phys. B, 585, 741 (2000) · Zbl 1042.81565
[53] Bogner, C.; Weinzierl, S., Comput. Phys. Commun., 178, 596 (2008) · Zbl 1196.81010
[54] Smirnov, A. V.; Smirnov, V. A., J. High Energy Phys., 05, Article 004 pp. (2009)
[55] Borowka, S., Comput. Phys. Commun., 196, 470 (2015) · Zbl 1360.81013
[56] Borowka, S.; Carter, J.; Heinrich, G., Comput. Phys. Commun., 184, 396 (2013)
[57] Borowka, S.; Heinrich, G., Comput. Phys. Commun., 184, 2552 (2013) · Zbl 1349.81012
[58] Borowka, S. C., Evaluation of Multi-loop Multi-scale Integrals and Phenomenological Two-Loop Applications (2014), Munich, Tech. U., PhD Thesis
[59] The British Standards Institution, The C Standard (2003), Wiley
[60] Bogner, C.; Weinzierl, S., Int. J. Mod. Phys. A, 25, 2585 (2010) · Zbl 1193.81072
[61] Olver, F.; Lozier, D.; Boisvert, R.; Clark, C., NIST Handbook of Mathematical Functions (2010), Cambridge University Press · Zbl 1198.00002
[62] Tkachov, F. V., Phys. Lett. B, 100, 65 (1981)
[63] Chetyrkin, K. G.; Tkachov, F. V., Nucl. Phys. B, 192, 159 (1981)
[64] Kotikov, A. V., Phys. Lett. B, 254, 158 (1991)
[65] Kotikov, A. V., Phys. Lett. B, 267, 123 (1991)
[66] Remiddi, E., Nuovo Cimento A, 110, 1435 (1997)
[67] Gehrmann, T.; Remiddi, E., Nucl. Phys. B, 580, 485 (2000) · Zbl 1071.81089
[68] Argeri, M.; Mastrolia, P., Int. J. Mod. Phys. A, 22, 4375 (2007) · Zbl 1141.81325
[69] Müller-Stach, S.; Weinzierl, S.; Zayadeh, R., Commun. Math. Phys., 326, 237 (2014) · Zbl 1285.81029
[70] Henn, J. M., Phys. Rev. Lett., 110, Article 251601 pp. (2013)
[71] Henn, J. M., J. Phys. A, 48, Article 153001 pp. (2015) · Zbl 1312.81078
[72] Adams, L.; Chaubey, E.; Weinzierl, S., Phys. Rev. Lett., 118, Article 141602 pp. (2017)
[73] Carlson, J.; Müller-Stach, S.; Peters, C., Period Mappings and Period Domains (2003), Cambridge University Press · Zbl 1030.14004
[74] Hwa, R. C.; Teplitz, V. L., Homology and Feynman Integrals (1966), W.A. Benjamin · Zbl 0139.46301
[75] Vermaseren, J. A.M., Int. J. Mod. Phys. A, 14, 2037 (1999) · Zbl 0939.65032
[76] Remiddi, E.; Vermaseren, J. A.M., Int. J. Mod. Phys. A, 15, 725 (2000) · Zbl 0951.33003
[77] Cox, D. A., Enseign. Math., 30, 275 (1984) · Zbl 0583.33002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.