×

Angular values of nonautonomous and random linear dynamical systems. I: Fundamentals. (English) Zbl 1498.37040

Summary: We introduce the notion of angular values for deterministic linear difference equations and random linear cocycles. We measure the principal angles between subspaces of fixed dimension as they evolve under nonautonomous or random linear dynamics. The focus is on long-term averages of these principal angles, which we call angular values: we demonstrate relationships between different types of angular values and prove their existence for random dynamical systems. For one-dimensional subspaces in two-dimensional systems our angular values agree with the classical theory of rotation numbers for orientation-preserving circle homeomorphisms if the matrix has positive determinant and does not rotate vectors by more than \(\frac{\pi}{2} \). Because our notion of angular values ignores orientation by looking at subspaces rather than vectors, our results apply to dynamical systems of any dimension and to subspaces of arbitrary dimension. The second part of the paper delves deeper into the theory of the autonomous case. We explore the relation to (generalized) eigenspaces, provide some explicit formulas for angular values, and set up a general numerical algorithm for computing angular values via Schur decompositions.

MSC:

37C60 Nonautonomous smooth dynamical systems
37H10 Generation, random and stochastic difference and differential equations
37A05 Dynamical aspects of measure-preserving transformations
37A30 Ergodic theorems, spectral theory, Markov operators
39A06 Linear difference equations
65Q10 Numerical methods for difference equations
15A18 Eigenvalues, singular values, and eigenvectors

References:

[1] L. Y. Adrianova, Introduction to Linear Systems of Differential Equations, Trans. Math. Monogr. 146, AMS, Providence, RI, 1995, https://doi.org/10.1090/mmono/146. · Zbl 0844.34001
[2] L. Arnold, Random Dynamical Systems, Springer Monogr. Math., Springer, Berlin, 1998, https://doi.org/10.1007/978-3-662-12878-7. · Zbl 0906.34001
[3] L. Arnold and L. San Martin, A multiplicative ergodic theorem for rotation numbers, J. Dynam. Differential Equations, 1 (1989), pp. 95-119, https://doi.org/10.1007/BF01048792. · Zbl 0684.34059
[4] B. Aulbach and J. Kalkbrenner, Exponential forward splitting for noninvertible difference equations, Comput. Math. Appl., 42 (2001), pp. 743-754, https://doi.org/10.1016/S0898-1221(01)00194-8. · Zbl 1005.39010
[5] L. Barreira, Ergodic Theory, Hyperbolic Dynamics and Dimension Theory, Universitext, Springer, Berlin, 2012, https://doi.org/10.1007/978-3-642-28090-0. · Zbl 1262.37001
[6] L. Barreira, Lyapunov Exponents, Springer, Berlin, 2017, https://doi.org/10.1007/978-3-319-71261-1. · Zbl 1407.37001
[7] W.-J. Beyn and T. Hüls, Angular Values of Linear Dynamical Systems and Their Connection to the Dichotomy Spectrum, arXiv:2012.11340, 2020.
[8] A. Bunse-Gerstner, R. Byers, V. Mehrmann, and N. K. Nichols, Numerical computation of an analytic singular value decomposition of a matrix valued function, Numer. Math., 60 (1991), pp. 1-39, https://doi.org/10.1007/BF01385712. · Zbl 0743.65035
[9] W. de Melo and S. van Strien, One-Dimensional Dynamics, Ergeb. Math. Grenzgeb. (3) 25, Springer, Berlin, 1993, https://doi.org/10.1007/978-3-642-78043-1. · Zbl 0791.58003
[10] L. Dieci and T. Eirola, On smooth decompositions of matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 800-819, https://doi.org/10.1137/S0895479897330182. · Zbl 0930.15014
[11] L. Dieci and C. Elia, The singular value decomposition to approximate spectra of dynamical systems. Theoretical aspects, J. Differential Equations, 230 (2006), pp. 502-531, https://doi.org/10.1016/j.jde.2006.08.007. · Zbl 1139.93014
[12] L. Dieci and E. S. Van Vleck, Lyapunov and Sacker-Sell spectral intervals, J. Dynam. Differential Equations, 19 (2007), pp. 265-293, https://doi.org/10.1007/s10884-006-9030-5. · Zbl 1130.34027
[13] C. Elia and R. Fabbri, Rotation number and exponential dichotomy for linear Hamiltonian systems: From theoretical to numerical results, J. Dynam. Differential Equations, 25 (2013), pp. 95-120, https://doi.org/10.1007/s10884-013-9290-9. · Zbl 1272.37036
[14] T. Fisher and B. Hasselblatt, Hyperbolic Flows, Zür. Lect. Adv. Math., European Mathematical Society, Zürich, 2019, https://doi.org/10.4171/200. · Zbl 1430.37002
[15] A. Galántai and C. J. Hegedüs, Jordan’s principal angles in complex vector spaces, Numer. Linear Algebra Appl., 13 (2006), pp. 589-598, https://doi.org/10.1002/nla.491. · Zbl 1174.15300
[16] I. Gohberg, M. A. Kaashoek, and J. Kos, Classification of linear time-varying difference equations under kinematic similarity, Integral Equations Operator Theory, 25 (1996), pp. 445-480, https://doi.org/10.1007/BF01203027. · Zbl 0860.39008
[17] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins Stud. Math. Sci., Johns Hopkins University Press, Baltimore, MD, 2013. · Zbl 1268.65037
[18] K. Gustafson, Antieigenvalue Analysis, World Scientific, Hackensack, NJ 2012, http://digitale-objekte.hbz-nrw.de/storage/2012/12/08/file_298/4879525.pdfKontakt:V:DE-605;Dateiformattyp: application/pdf; Bezugswerk: Inhaltsverzeichnis; Bez.: 2.
[19] M. Hénon, A two-dimensional mapping with a strange attractor, Comm. Math. Phys., 50 (1976), pp. 69-77, http://projecteuclid.org/euclid.cmp/1103900150. · Zbl 0576.58018
[20] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, Cambridge, UK, 2013. · Zbl 1267.15001
[21] S. Jiang, Angles between Euclidean subspaces, Geom. Dedicata, 63 (1996), pp. 113-121, https://doi.org/10.1007/BF00148212. · Zbl 0860.51008
[22] R. Johnson and M. Nerurkar, Exponential dichotomy and rotation number for linear Hamiltonian systems, J. Differential Equations, 108 (1994), pp. 201-216, https://doi.org/10.1006/jdeq.1994.1033. · Zbl 0871.34032
[23] R. A. Johnson, \(m\)-functions and Floquet exponents for linear differential systems, Ann. Mat. Pura Appl. (4), 147 (1987), pp. 211-248, https://doi.org/10.1007/BF01762419. · Zbl 0652.34016
[24] A. B. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl. 54, Cambridge University Press, Cambridge, UK, 1995, https://doi.org/10.1017/CBO9780511809187. · Zbl 0878.58020
[25] C. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000, https://doi.org/10.1137/1.9780898719512. · Zbl 0962.15001
[26] M. Misiurewicz and K. Ziemian, Rotation sets for maps of tori, J. Lond. Math. Soc. (2), 40 (1989), pp. 490-506, https://doi.org/10.1112/jlms/s2-40.3.490. · Zbl 0663.58022
[27] Z. Nitecki, Differentiable Dynamics. An Introduction to the Orbit Structure of Diffeomorphisms, MIT Press, Cambridge, MA, 1971. · Zbl 0246.58012
[28] K. Petersen, Ergodic Theory, Cambridge Stud. Adv. Math. 2, Cambridge University Press, Cambridge, UK, 1989. · Zbl 0676.28008
[29] K. Polotzek, K. Padberg-Gehle, and T. Jäger, Set-oriented numerical computation of rotation sets, J. Comput. Dyn., 4 (2017), pp. 119-141, https://doi.org/10.3934/jcd.2017004. · Zbl 1410.65482
[30] C. Pötzsche, Dichotomy spectra of triangular equations, Discrete Contin. Dyn. Syst., 36 (2016), pp. 423-450, https://doi.org/10.3934/dcds.2016.36.423. · Zbl 1364.39016
[31] V. Rakočević and H. K. Wimmer, A variational characterization of canonical angles between subspaces, J. Geom., 78 (2003), pp. 122-124, https://doi.org/10.1007/s00022-003-1687-x. · Zbl 1051.15009
[32] R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Equations, 27 (1978), pp. 320-358. · Zbl 0372.34027
[33] R. Sturman and J. Stark, Semi-uniform ergodic theorems and applications to forced systems, Nonlinearity, 13 (2000), pp. 113-143, https://doi.org/10.1088/0951-7715/13/1/306. · Zbl 1005.37016
[34] P. Zhu and A. V. Knyazev, Angles between subspaces and their tangents, J. Numer. Math., 21 (2013), pp. 325-340, https://doi.org/10.1515/jnum-2013-0013. · Zbl 1286.65052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.