×

Natural convection flow and heat transfer of generalized Maxwell fluid with distributed order time fractional derivatives embedded in the porous medium. (English) Zbl 07927806

Summary: Numerical simulation was performed for unsteady natural convection flow and heat transfer in a porous medium using the generalized Maxwell model and fractional Darcy’s law with distributed order time fractional derivatives. The finite volume method combined with the fractional \(L1\) scheme was used to solve strongly coupled governing equations with nonlinear fractional convection terms. Numerical solutions were validated via grid independence tests and comparisons with special exact solutions. The effects of porosity, Darcy number, and relaxation time parameters on transport fields are presented. The results illustrate that porosity and permeability have opposite influences on temperature and velocity profiles. Moreover, the relaxation time parameters have remarkable effects on velocity profiles, and the variations possess significant differences.

MSC:

76Axx Foundations, constitutive equations, rheology, hydrodynamical models of non-fluid phenomena
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
26Axx Functions of one variable
Full Text: DOI

References:

[1] B. Khuzhayorov, J. L. Auriault, P. Royer, Derivation of macroscopic filtration law for transient linear viscoelastic fluid flow in porous media, Int. J. Eng. Sci., 38 (2000), 487-504. https://doi.org/10.1016/S0020-7225(99)00048-8 doi: 10.1016/S0020-7225(99)00048-8 · Zbl 1210.76177 · doi:10.1016/S0020-7225(99)00048-8
[2] M. S. Malashetty, I. S. Shivakumara, S. Kulkarni, M. Swamy, Convective instability of Oldroyd-B fluid saturated porous layer heated from below using a thermal non-equilibrium model, Transp Porous Med, 64 (2006), 123-139. https://doi.org/10.1007/s11242-005-1893-0 doi: 10.1007/s11242-005-1893-0 · doi:10.1007/s11242-005-1893-0
[3] I. S. Shivakumara, M. Dhananjaya, C. O Ng, Thermal convective instability in an Oldroyd-B nanofluid saturated porous layer, Int J Heat Mass Tran, 84 (2015), 167-177. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.010 doi: 10.1016/j.ijheatmasstransfer.2015.01.010 · doi:10.1016/j.ijheatmasstransfer.2015.01.010
[4] H. Xu, X. Jiang, Creep constitutive models for viscoelastic materials based on fractional derivatives, Comput. Math. Appl., 73 (2017), 1377-1384. https://doi.org/10.1016/j.camwa.2016.05.002 doi: 10.1016/j.camwa.2016.05.002 · Zbl 1458.74027 · doi:10.1016/j.camwa.2016.05.002
[5] D. Yao, A fractional dashpot for nonlinear viscoelastic fluids, J. Rheol., 62 (2018), 619-629. https://doi.org/10.1122/1.5012504 doi: 10.1122/1.5012504 · doi:10.1122/1.5012504
[6] M. Shen, L. Chen, M. Zhang, F. Liu, A renovated Buongiorno’s model for unsteady Sisko nanofluid with fractional Cattaneo heat flux, Int J Heat Mass Tran., 126 (2018), 277-286. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.131 doi: 10.1016/j.ijheatmasstransfer.2018.05.131 · doi:10.1016/j.ijheatmasstransfer.2018.05.131
[7] X. Chen, W. Yang, X. Zhang, F. Liu, Unsteady boundary layer flow of viscoelastic MHD fluid with a double fractional Maxwell model, Appl. Math. Lett., 95 (2019), 143-149. https://doi.org/10.1016/j.aml.2019.03.036 doi: 10.1016/j.aml.2019.03.036 · Zbl 1448.76017 · doi:10.1016/j.aml.2019.03.036
[8] Q. Wei, H. W. Zhou, S. Yang, Non-Darcy flow models in porous media via Atangana-Baleanu derivative, Chaos Soliton Fract, 141 (2020), 110335. https://doi.org/10.1016/j.chaos.2020.110335 doi: 10.1016/j.chaos.2020.110335 · doi:10.1016/j.chaos.2020.110335
[9] X. Yang, Y. J. Liang, W. Chen, Anomalous imbibition of non-Newtonian fluids in porous media, Chem. Eng. Sci., 211 (2020), 115265. https://doi.org/10.1016/j.ces.2019.115265 doi: 10.1016/j.ces.2019.115265 · doi:10.1016/j.ces.2019.115265
[10] S. E. Ahmed, Caputo fractional convective flow in an inclined wavy vented cavity filled with a porous medium using \(Al_2 O_3-Cu\) hybrid nanofluids, Int. Commun. Heat Mass Transf., 116 (2020), 104690. https://doi.org/10.1016/j.icheatmasstransfer.2020.104690 doi: 10.1016/j.icheatmasstransfer.2020.104690 · doi:10.1016/j.icheatmasstransfer.2020.104690
[11] Z. Y. Ai, Y. Z. Zhao, W. J. Liu, Fractional derivative modeling for axisymmetric consolidation of multilayered cross-anisotropic viscoelastic porous media, Comput. Math. Appl., 79 (2020), 1321-1334. https://doi.org/10.1016/j.camwa.2019.08.033 doi: 10.1016/j.camwa.2019.08.033 · Zbl 1443.74173 · doi:10.1016/j.camwa.2019.08.033
[12] X. Y. Jiang, H. Zhang, S. W. Wang, Unsteady magnetohydrodynamic flow of generalized second grade fluid through porous medium with Hall effects on heat and mass transfer, Phys. Fluids., 32 (2020), 113105. https://doi.org/10.1063/5.0032821 doi: 10.1063/5.0032821 · doi:10.1063/5.0032821
[13] Y. H. Jiang, H. G. Sun, Y. Bai, Y. Zhang, MHD flow, radiation heat and mass transfer of fractional Burgers’ fluid in porous medium with chemical reaction, Comput. Math. Appl., 115 (2022), 68-79. https://doi.org/10.1016/j.camwa.2022.01.014 doi: 10.1016/j.camwa.2022.01.014 · Zbl 1524.76017 · doi:10.1016/j.camwa.2022.01.014
[14] A. V. Chechkin, R. Gorenflo, I. M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed order fractional diffusion equations, Phys. Rev. E, 66 (2002), 046129. https://doi.org/10.1103/PhysRevE.66.046129 doi: 10.1103/PhysRevE.66.046129 · doi:10.1103/PhysRevE.66.046129
[15] M. Caputo, Elasticità e dissipazione, Bologna: Zanichelli, 1969.
[16] L. Liu, L. B. Feng, Q. Xu, L. C. Zheng, F. W. Liu, Flow and heat transfer of generalized Maxwell fluid over a moving plate with distributed order time fractional constitutive models, Int. Commun. Heat Mass Transf., 116 (2020), 104679. https://doi.org/10.1016/j.icheatmasstransfer.2020.104679 doi: 10.1016/j.icheatmasstransfer.2020.104679 · doi:10.1016/j.icheatmasstransfer.2020.104679
[17] Y. L. Qiao, X. P. Wang, H. Y. Xu, H. T. Qi, Numerical analysis for viscoelastic fluid flow with distributed/variable order time fractional Maxwell constitutive models, Appl. Math. Mech.-Engl. Ed., 42 (2021), 1771-1786. https://doi.org/10.1007/s10483-021-2796-8 doi: 10.1007/s10483-021-2796-8 · Zbl 1515.76012 · doi:10.1007/s10483-021-2796-8
[18] Z. F. Long, L. Liu, S. Yang, L. B. Feng, L. C. Zheng, Analysis of Marangoni boundary layer flow and heat transfer with novel constitution relationships, Int. Commun. Heat Mass Transf., 127 (2021), 105523. https://doi.org/10.1016/j.icheatmasstransfer.2021.105523 doi: 10.1016/j.icheatmasstransfer.2021.105523 · doi:10.1016/j.icheatmasstransfer.2021.105523
[19] W. D. Yang, X. H. Chen, X. R. Zhang, L. C. Zheng, F. W. Liu, Flow and heat transfer of viscoelastic fluid with a novel space distributed-order constitution relationship, Comput. Math. Appl., 94 (2021), 94-103. https://doi.org/10.1016/j.camwa.2021.04.023 doi: 10.1016/j.camwa.2021.04.023 · Zbl 1524.76021 · doi:10.1016/j.camwa.2021.04.023
[20] L. B. Feng, I. Turner, T. Moroney, F. W. Liu, An investigation of space distributed-order models for simulating anomalous transport in a binary medium, Appl. Math. Comput., 434 (2022), 127423. https://doi.org/10.1016/j.amc.2022.127423 doi: 10.1016/j.amc.2022.127423 · Zbl 1510.35253 · doi:10.1016/j.amc.2022.127423
[21] X. H. Chen, H. B. Xie, W. D. Yang, M. W. Chen, L. C. Zheng, Start-up flow in a pipe of a double distributed-order Maxwell fluid, Appl. Math. Lett., 134 (2022), 108302. https://doi.org/10.1016/j.aml.2022.108302 doi: 10.1016/j.aml.2022.108302 · Zbl 1497.76005 · doi:10.1016/j.aml.2022.108302
[22] Y. X. Niu, Y. Liu, H. Li, F. W. Liu, Fast high-order compact difference scheme for the nonlinear distributed-order fractional Sobolev model appearing in porous media, Math Comput Simul, 203 (2023), 387-407. https://doi.org/10.1016/j.matcom.2022.07.001 doi: 10.1016/j.matcom.2022.07.001 · Zbl 1540.65313 · doi:10.1016/j.matcom.2022.07.001
[23] L. Liu, S. Y. Chen, L. B. Feng, J. Zhu, J. S. Zhang, L. C. Zheng, et al., A novel distributed order time fractional model for heat conduction, anomalous diffusion, and viscoelastic flow problems, Comput. Fluid., 265 (2023), 105991. https://doi.org/10.1016/j.compfluid.2023.105991 doi: 10.1016/j.compfluid.2023.105991 · Zbl 1521.80009 · doi:10.1016/j.compfluid.2023.105991
[24] Y. J. Hu, B. T. Li, C. G. Cao, On viscoelastic blood in a locally narrow artery with magnetic field: application of distributed-order time fractional Maxwell model, Phys Scr, 99 (2024), 055018. https://doi.org/10.1088/1402-4896/ad3686 doi: 10.1088/1402-4896/ad3686 · doi:10.1088/1402-4896/ad3686
[25] M. C. Zhang, F. W. Liu, I. W. Turner, V. V. Anh, Numerical simulation of the distributed-order time-space fractional Bloch-Torrey equation with variable coefficients, Appl. Math. Model., 129 (2024), 169-190. https://doi.org/10.1016/j.apm.2024.01.050 doi: 10.1016/j.apm.2024.01.050 · doi:10.1016/j.apm.2024.01.050
[26] W. Ding, S. Patnaik, S. Sidhardh, F. Semperlotti, Applications of distributed-order fractional operators: a review, Entropy, 23 (2021), 110. https://doi.org /10.3390 /e23010110 · Zbl 1481.74142
[27] L. Liu, L. B. Feng, Q. Xu, Y. P. Chen, Anomalous diffusion in comb model subject to a novel distributed order time fractional Cattaneo-Christov flux, Appl. Math. Lett., 102 (2020), 106116. https://doi.org/10.1016/j.aml.2019.106116 doi: 10.1016/j.aml.2019.106116 · Zbl 1465.65076 · doi:10.1016/j.aml.2019.106116
[28] I. Podlubny, Fractional Differential Equations, San Diego: Academic Press, 1999, 78-85. · Zbl 0924.34008
[29] K. Diethelm, N. J. Ford, Numerical analysis for distributed-order differential equations, J. Comput. Appl. Math., 225 (2009), 96-104. https://doi.org/10.1016/j.cam.2008.07.018 doi: 10.1016/j.cam.2008.07.018 · Zbl 1159.65103 · doi:10.1016/j.cam.2008.07.018
[30] K. Diethelm, N. J. Ford, Analysis of Fractional Differential Equations, J. Math. Anal. Appl., 265 (2002), 229-248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194 · Zbl 1014.34003 · doi:10.1006/jmaa.2000.7194
[31] L. Liu, S. Yang, L. B. Feng, Q. Xu, L. C. Zheng, F. W. Liu, Memory dependent anomalous diffusion in comb structure under distributed order time fractional dual-phase-lag model, Int. J. Biomath., 14 (2021), 2150048. https://doi.org/10.1142/S1793524521500480 doi: 10.1142/S1793524521500480 · Zbl 1510.60091 · doi:10.1142/S1793524521500480
[32] F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Stability and convergence of the difference methods for the space time fractional advection diffusion equation, Appl. Math. Comput., 191 (2007), 12-20. https://doi.org/10.1016/j.amc.2006.08.162 doi: 10.1016/j.amc.2006.08.162 · Zbl 1193.76093 · doi:10.1016/j.amc.2006.08.162
[33] Z. Sun, X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), 193-209. https://doi.org/10.1016/j.apnum.2005.03.003 doi: 10.1016/j.apnum.2005.03.003 · Zbl 1094.65083 · doi:10.1016/j.apnum.2005.03.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.