×

Mathematical modelling for peristaltic flow of fourth-grade nanoliquid with entropy generation. (English) Zbl 07834680

Summary: Nanomaterials having excellent thermal properties are employed in producing energy, extrusion processes, engineering processes, nuclear interactions, industrial domains and aero-spaces, etc. Therefore, current study scrutinizes the aspects of entropy optimization and Ohmic heating on MHD peristalsis of fourth-grade nanoliquid in a channel. Flexible channel walls retain concentration, thermal slip and velocity conditions. The consequences of viscous dissipation and Arrhenius activation have been accounted. The lubrication approximation is used in mathematical modelling. Nanofluid model is used by considering thermophoresis and Brownian motion. Furthermore, thermal radiation features are included in the energy equation. By using an appropriate similarity transformation, a system of PDEs is simplified to a solvable system of ODEs. Numerical techniques are used to solve the problem of governance. Detailed exploration of the sundry variables of concern on the flow quantities like velocity profile, nanoparticle concentration, temperature and entropy of the system is graphically examined. Heat transfer is examined in tabular form. Based on the derived outcomes, the velocity rises via thermal Grashof and slip variables. Further, an increment in Brownian motion and radiation parameters shows opposite behaviour on temperature.
© 2023 Wiley-VCH GmbH.

MSC:

76-XX Fluid mechanics
76Mxx Basic methods in fluid mechanics
76Axx Foundations, constitutive equations, rheology, hydrodynamical models of non-fluid phenomena
Full Text: DOI

References:

[1] Latham, T.W.: Fluid Motion in a Peristaltic Pump. M.Sc. Thesis, MIT, Cambridge (1966)
[2] Shapiro, A.H., Jaffrin, M.Y., Weinberg, S.L.: Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech. 37, 799-825 (1969)
[3] Mustafa, M., Hina, S., Hayat, T., Alsaedi, A.: Influence of wall properties on the peristaltic flow of a nanofluid: analytic and numerical solutions. Int. J. Heat Mass Transfer55, 4871-4877 (2012)
[4] Bhatti, M.M., Zeeshan, M.M., Zeeshan, A., Ijaz, N.: Slip effects and endoscopy analysis on blood flow of particle‐fluid suspension induced by peristaltic wave. J. Mol. Liq.218, 240-245 (2016)
[5] Sinnott, M.D., Cleary, P.W., Harrison, S.M.: Peristaltic transport of a particulate suspension in the small intestine. Appl. Math. Model.44, 143-159 (2017) · Zbl 1443.76076
[6] Hasona, W.M., El‐Shekhipy, A.A., Ibrahim, M.G.: Combined effects of magnetohydrodynamic and temperature dependent viscosity on peristaltic flow of Jeffrey nanofluid through a porous medium: Applications to oil refinement. Int. J. Heat Mass Transf.126, 700-714 (2018)
[7] Javid, K., Ali, N., Asghar, Z.: Numerical simulation of the peristaltic motion of a viscous fluid through a complex wavy non‐uniform channel with magnetohydrodynamic effects. Phys. Scr.94, 115226 (2019)
[8] Nisar, Z., Hayat, T., Alsaedi, A., Ahmad, B.: Significance of activation energy in radiative peristaltic transport of Eyring‐Powell nanofluid. Int. Commun. Heat Mass Transf.116, 104655 (2020)
[9] Tahir, M., Ahmad, A., Shehzad, S.A.: Study of pseudoplastic and dilatant behavior of nanofluid in peristaltic flow: Reiner‐Philippoff models. Chin. J. Phys.77, 2371-2388 (2022) · Zbl 07851789
[10] Akram, S., Athar, M., Saeed, K., Razia, A., Muhammad, T.: Theoretical investigation of double diffusion convection of six constant Jeffreys nanofluid on waves of peristaltic with induced magnetic field: a bio‐nano‐engineering model. Waves Random Complex Media1-21 (2022) https://doi.org/10.1080/17455030.2022.2134600 · doi:10.1080/17455030.2022.2134600
[11] Kayani, S.M., Hina, S., Mustafa, M.: A new model and analysis for peristalsis of Carreau-Yasuda (CY) nanofluid subject to wall properties. Arab. J. Sci. Eng.45, 5179-5190 (2020)
[12] Arooj, A., Javed, M., Imran, N., Sohail, M., Yao, S.W.: Pharmacological and engineering biomedical applications of peristaltically induced flow in a curved channel. Alex. Eng. J.60, 4995-5008 (2021)
[13] Nisar, Z., Hayat, T., Alsaedi, A., Momani, S.: Peristaltic flow of chemically reactive Carreau‐Yasuda nanofluid with modified Darcy’s expression. Today Commun. 33, 104532 (2022)
[14] Gaikwad, H.S., Basu, D.N., Mondal, P.K.: Slip driven micro‐pumping of binary system with a layer of non‐conducting fluid under electrical double layer phenomenon. Colloids Surf. A: Physicochem. Eng Asp.518, 166-172 (2017)
[15] Gaikwad, H., Mondal, P.K.: Slip‐driven electroosmotic transport through porous media. Electrophoresis38, 596-606 (2017)
[16] Gaikwad, H., Basu, D.N., Mondal, P.K.: Electroosmotic transport of immiscible binary system with a layer of non‐conducting fluid under interfacial slip: The role applied pressure gradient. Electrophoresis37, 1998-2009 (2016)
[17] Choi, S.U.S.: Enhancing thermal conductivity of fluid with nanoparticles, developments and applications of non‐Newtonian Flow. ASME FED66(231), 99-105 (1995).
[18] Buongiorno, J.: Convective transport in nanofluids, ASME J. Heat Transf.128, 240-250 (2006)
[19] Zhu, J., Yang, D., Zheng, L., Zhang, X.: Effects of second order velocity slip and nanoparticles migration on flow of Buongiorno nanofluid. Appl. Math. Lett.52, 183-191 (2016) · Zbl 1330.76107
[20] Abbasi, F.M., Shanakhat, I., Shehzad, S.A.: Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects. J. Magn. Magn. Mater.474, 434-441 (2019)
[21] Ali, A., Saleem, S., Mumraiz, S., Saleem, A., Awais, M., Khan Marwat, D.N.: Investigation on TiO 2-Cu/H 2 O hybrid nanofluid with slip conditions in MHD peristaltic flow of Jeffrey material. J. Therm. Anal. Calorim.143, 1985-1996 (2021)
[22] Abbasi, F.M., Zahid, U.M., Akbar, Y., Saba, M.B.B.H.: Thermodynamic analysis of electroosmosis regulated peristaltic motion of Fe 3 O 4-Cu/H 2 O hybrid nanofluid. Int. J. Modern Phys. B36, 2250060 (2022)
[23] Kumar, M., Mondal, P.K.: Irreversibility analysis of hybrid nanofluid flow over a rotating disk: Effect of thermal radiation and magnetic field. Colloids Surf. A: Physicochem. Eng. Asp.635, 128077 (2022)
[24] Nisar, Z., Hayat, T., Alsaedi, A., Ahmad, B.: Mathematical modeling for peristalsis of couple stress nanofluid. Math. Meth. Appl. Sci.1‐19 (2022) https://doi.org/10.1002/mma.8641 · Zbl 1539.76239 · doi:10.1002/mma.8641
[25] Akram, S., Athar, M., Saeed, K., Razia, A., Muhammad, T., Alghamdi, H.A.: Mechanism of Double‐Diffusive Convection on peristaltic transport of thermally radiative Williamson nanomaterials with slip boundaries and induced magnetic field: A bio‐nanoengineering model. Nanomater13, 941 (2023)
[26] Saeed, K., Akram, S., Ahmad, A., Athar, M., Razia, A., Muhammad, T.: Impact of slip boundaries on double diffusivity convection in an asymmetric channel with magneto‐tangent hyperbolicnanofluid with peristaltic flow. Z Angew Math Mech. 103, e202100338 (2023). https://doi.org/10.1002/zamm.202100338 · Zbl 07824426 · doi:10.1002/zamm.202100338
[27] Akram, S., Athar, M., Saeed, K., Razia, A., Muhammad, T., Hussain, A.: Hybrid double‐diffusivity convection and induced magnetic field effects on peristaltic waves of Oldroyd 4‐constant nanofluids in non‐uniform channel. Alex. Eng. J.65, 785-796 (2023)
[28] Akram, S., Athar, M., Saeed, K., Razia, A.: Theoretical analysis of partial slip on double‐diffusion convection of Eyring‐Powell nanofluids under the effects of peristaltic propulsion and inclined magnetic field. J. Magn. Magn. Mater.569, 170445 (2023)
[29] Akram, S., Athar, M., Saeed, K., Razia, A., Muhammad, T., Alghamdi, H.A.: Mathematical simulation of double diffusion convection on peristaltic pumping of Ellis nanofluid due to induced magnetic field in a non‐uniform channel: Applications of magnetic nanoparticles in biomedical engineering. J. Magn. Magn. Mater.569, 170408 (2023)
[30] Khan, Z.H., Akbar, N.S., Akram, J., Hamid, M., Wei, Y.: Electroosmotically augmentedperistaltic flow of Carbon Nanotubes based Nanofluid through Asymmetrical Channel. Z Angew Math Mech.e202100354 (2023). https://doi.org/10.1002/zamm.202100354 · Zbl 1535.76119 · doi:10.1002/zamm.202100354
[31] Iqbal, J., Abbasi, F.M., Alkinidri, M., Alahmadi, H.: Heat and mass transfer analysis for MHD bioconvection peristaltic motion of Powell‐Eyring nanofluid with variable thermal characteristics, Case Stud. Therm. Eng43, 102692 (2023)
[32] Nisar, Z., Yasmin, H.: Analysis of motile gyrotactic micro‐organisms for the bioconvection peristaltic flow of Carreau-Yasuda bionanomaterials. Coatings, 13(2), 314 (2023)
[33] Alghamdi, M., Fatima, B., Hussain, Z., Nisar, Z., Alghamdi, H.A.: Peristaltic pumping of hybrid nanofluids through an inclined asymmetric channel: A biomedical application. Mater. Today Commun.35, 105684 (2023)
[34] Ali, N., Sajid, M., Abbas, Z., Javed, T.: Non‐Newtonian fluid flow induced by peristaltic waves in a curved channel. Eur. J. Mech. B/Fluids.29, 387-394 (2010) · Zbl 1196.76014
[35] Mondal, P.K., DasGupta, D., Chakraborty, S.: Rheology‐modulated contact line dynamics of an immiscible binary system under electrical double layer phenomena. Soft Matter.11, 6692-6702 (2015)
[36] Mansukhani, J., Tripathy, A., Kumar, M., Mondal, P.K.: Propagative‐rhythmic membrane contraction modulated efficient micro pumping of non‐Newtonian fluids. Phys. Fluids34, 112007 (2022)
[37] Shahzad, M.H., Awan, A.U.: Mechanics of heated Rabinowitsch fluid in elliptic vertical duct: Peristalsis and analytical study. Int. J. Modern Phys. B2350274 (2023)
[38] Mustafa, M., Abbasbandy, S., Hina, S., Hayat, T.: Numerical investigation on mixed convective peristaltic flow of fourth grade fluid with Dufour and Soret effects. J. Taiwan Inst. Chem. Eng.45, 308-316 (2014)
[39] Khan, A.A., Masood, F., Ellahi, R., Bhatti, M.M.: Mass transport on chemicalized fourth‐grade fluid propagating peristaltically through a curved channel with magnetic effects. J. Mol. Liq.258, 186-195 (2018)
[40] Hayat, T., Nisar, Z., Alsaedi, A.: Impacts of slip in radiative MHD peristaltic flow of fourth grade nanomaterial with chemical reaction. Int. Communi. Heat Mass Transf.119, 104976 (2020)
[41] Khan, Y., Akram, S., Razia, A., Hussain, A., Alsulaimani, H.A.: Effects of double diffusive convection and inclined magnetic field on the peristaltic flow of fourth grade nanofluids in a non‐uniform channel. Nanomater12, 3037 (2022)
[42] Bejan, A.: Convection Heat Transfer, First Ed., John Wiley & Sons Inc, New York (1984) · Zbl 0599.76097
[43] Sarma, R., Jain, M., Mondal, P.K.: Towards the minimization of thermodynamic irreversibility in an electrically actuated microflow of a viscoelastic fluid under electrical double layer phenomenon. Phys. Fluids29, 103102 (2017)
[44] Narla, V.K., Tripathi, D.: Entropy and exergy analysis on peristaltic pumping in a curved narrow channel. Heat Transf.49, 3357-3373 (2020)
[45] Abbas, Z., Rafiq, M.Y., Alshomrani, A.S., Ullah, M.Z.: Analysis of entropy generation on peristaltic phenomena of MHD slip flow of viscous fluid in a diverging tube. Case Stud. Therm. Eng.23, 100817 (2021)
[46] Priam, S.S., Nasrin, R.: Numerical appraisal of time‐dependent peristaltic duct flow using Casson fluid. Int. J. Mech. Sci.233, 107676 (2022)
[47] Iqbal, J., Abbasi, F.M.: Analysis of entropy generation for Magnetohydrodynamics peristaltic motion of Carreau‐Yasuda nanofluid through a curved channel with variable thermal conductivity and Joule heating. Waves Random Complex Media1-20 (2022) https://doi.org/10.1080/17455030.2022.2134603 · doi:10.1080/17455030.2022.2134603
[48] Ellahi, R., Zeeshan, A., Hussain, F., Asadollahi, A.: Peristaltic blood flow of couple stress fluid suspended with nanoparticles under the influence of chemical reaction and activation energy. Symmetry11, 276 (2019) · Zbl 1416.92089
[49] Khan, N.S., Kumam, P., Thounthong, P.: Second law analysis with effects of Arrhenius activation energy and binary chemical reaction on nanofluid flow. Sci. Rep.10, 1226 (2020)
[50] Kotresh, M.J., Ramesh, G.K., Shashikala, V.K.R., Prasannakumara, B.C.: Assessment of Arrhenius activation energy in stretched flow of nanofluid over a rotating disc. Heat Transf. 50, 2807-2828 (2021)
[51] Muhammad, T., Waqas, H., Khan, S.A., Ellahi, R., Sait, S.M.: Significance of nonlinear thermal radiation in 3D Eyring-Powell nanofluid flow with Arrhenius activation energy. J. Therm. Anal. Calorim.143, 929-944 (2021)
[52] Waqas, H., Kafait, A., Muhammad, T., Farooq, U.: Numerical study for bio‐convection flow of tangent hyperbolic nanofluid over a Riga plate with activation energy. Alex. Eng. J.61, 1803-1814 (2022)
[53] Hussein, S.A., Ahmed, S.E., Arafa, A.A.M: Electrokinetic peristaltic bioconvective Jeffrey nanofluid flow with activation energy for binary chemical reaction, radiation and variable fluid properties. Z. Angew. Math. Mech.e202200284 (2022) https://doi.org/10.1002/zamm.202200284 · Zbl 07824441 · doi:10.1002/zamm.202200284
[54] Akbar, Y., Akram, U., Afsar, H., Javed, M.W., Ullah, N.: Flow and heat transportation in peristalsis of graphene‐Fe 3 O 4/H 2 O hybrid nanofluid with variable effective viscosity. Phys. Scr.96, 115005 (2021)
[55] Ahmed, B., Hayat, T., Abbasi, F.M., Alsaedi, A.: Mixed convection and thermal radiation effect on MHD peristaltic motion of Powell‐Eyring nanofluid. Int. Commun. Heat Mass Transf.126, 105320 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.