×

Saturating systems and the rank-metric covering radius. (English) Zbl 07784775

The covering radius of a code is the least positive integer \(\rho\) such that the union of the spheres of radius \(\rho\) about each codeword is equal to the full ambient space. It gives a measure of its error-correcting capabilities via a determination of the maximal weight of a correctable error.
The rank distance between \(u, v\in\mathbb{F}_{q^m}^n\) is defined to be the \(\mathbb{F}_q\)-dimension of the vector space, i.e. \(d_{\text{rk}}(u, v)=\text{dim}\mathbb{F}_q \left\langle u_i-v_i \vert 1\leq i \leq n\right\rangle_{\mathbb{F}_q}.\) An \([n, k, d]_{q^m/q}\) rank-metric code \(C\) is a \(k\)-dimensional \(\mathbb{F}_{q^m}\)-subspace of \(\mathbb{F}_{q^m}^n\) such that \(d = d_{\text{rk}}(C)= \text{min}\{d_{\text{rk}}(c, c') \vert c, c'\in C, c\neq c'\}.\) The authors are studying the covering radius problems in the rank metric settings from a geometric viewpoint. To achieve their goals, the notion of a \([n, k]_{q^m/q}\) rank-\(\rho\)-saturating system in correspondence with a rank-metric covering code is introduced.
Let \(s_{q^m/q}(k, \rho)\) denotes the minimum \(\mathbb{F}_q\)-dimension of a rank-\(\rho\)-saturating system in \(\mathbb{F}_{q^m}^k.\) It’s shown that this number for \(q>2\) satisfies the following bounds: \(\left\lceil\cfrac{mk}{\rho}\right\rceil-m+\rho\leq s_{q^m/q}(k, \rho)\leq m(k-\rho)+\rho,\) and the lower bound is sharpened when \(q=2.\)
Two different approaches are shown: one construction steaming from linear cutting blocking sets, and the other uses subgeometries. Finally, eight cases are shown, for which \(s_{q^m/q}(k, \rho)\) is completely determined, including when \(\rho=1\) or \(k\); when \(\rho=2, k=3\) and \(m=2r\) or 10; and when \(m=k=2r\) and \(\rho=k-1.\)

MSC:

94B75 Applications of the theory of convex sets and geometry of numbers (covering radius, etc.) to coding theory
05B40 Combinatorial aspects of packing and covering
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)
51E20 Combinatorial structures in finite projective spaces
52C17 Packing and covering in \(n\) dimensions (aspects of discrete geometry)

References:

[1] Alfarano, G.N., Borello, M., Neri, A.: A geometric characterization of minimal codes and their asymptotic performance. Adv. Math. Commun. 16(1) (2022) · Zbl 1482.51005
[2] Alfarano, G.N., Borello, M., Neri, A.: Outer strong blocking sets. arXiv preprint arXiv:2301.09590 (2023)
[3] Alfarano, GN; Borello, M.; Neri, A.; Ravagnani, A., Linear cutting blocking sets and minimal codes in the rank metric, J. Comb. Theory Ser. A, 192, 105658 (2022) · Zbl 1505.94086 · doi:10.1016/j.jcta.2022.105658
[4] Alfarano, GN; Borello, M.; Neri, A.; Ravagnani, A., Three combinatorial perspectives on minimal codes, SIAM J. Discrete Math., 36, 1, 461-489 (2022) · Zbl 1506.94088 · doi:10.1137/21M1391493
[5] Alon, N., Bishnoi, A., Das, S., Neri, A.: Strong blocking sets and minimal codes from expander graphs. arXiv preprint arXiv:2305.15297 (2023)
[6] Bartoli, D.; Borello, M., Small strong blocking sets by concatenation, SIAM J. Discrete Math., 37, 1, 65-82 (2023) · Zbl 1519.51005 · doi:10.1137/21M145032X
[7] Bartoli, D.; Csajbók, B.; Marino, G.; Trombetti, R., Evasive subspaces, J. Comb. Des., 29, 8, 533-551 (2021) · Zbl 07840149 · doi:10.1002/jcd.21783
[8] Bartoli, D.; Marino, G.; Neri, A., New MRD codes from linear cutting blocking sets, Ann. Mat. Pura Appl. (1923), 202, 1, 115-142 (2023) · Zbl 1521.94068 · doi:10.1007/s10231-022-01235-5
[9] Bishnoi, A., D’haeseleer, J., Gijswijt, D., Potukuchi, A.: Blocking sets, minimal codes and trifferent codes. arXiv preprint arXiv:2301.09457 (2023)
[10] Blokhuis, A.; Lavrauw, M., Scattered spaces with respect to a spread in PG(n, q), Geom. Dedicata, 81, 1, 231-243 (2000) · Zbl 0990.51004 · doi:10.1023/A:1005283806897
[11] Bonini, M.; Borello, M., Minimal linear codes arising from blocking sets, J. Algebraic Comb., 53, 2, 327-341 (2021) · Zbl 1489.94130 · doi:10.1007/s10801-019-00930-6
[12] Brualdi, R.; Pless, V.; Wilson, R., Short codes with a given covering radius, IEEE Trans. Inf. Theory, 35, 1, 99-109 (1989) · Zbl 0671.94015 · doi:10.1109/18.42181
[13] Byrne, E.; Calderini, M., Index coding, network coding and broadcast with side-information, Network Coding and Subspace Designs, 171-211 (2018), Berlin: Springer, Berlin
[14] Byrne, E.; Ravagnani, A., Covering radius of matrix codes endowed with the rank metric, SIAM J. Discrete Math., 31, 2, 927-944 (2017) · Zbl 1395.94374 · doi:10.1137/16M1091769
[15] Byrne, E.; Ravagnani, A., Partition-balanced families of codes and asymptotic enumeration in coding theory, J. Comb. Theory Ser. A, 171, 105169 (2020) · Zbl 1467.94047 · doi:10.1016/j.jcta.2019.105169
[16] Calderbank, R.; Kantor, WM, The geometry of two-weight codes, Bull. Lond. Math. Soc., 18, 2, 97-122 (1986) · Zbl 0582.94019 · doi:10.1112/blms/18.2.97
[17] Cohen, GD; Honkala, I.; Litsyn, S.; Lobstein, A., Covering Codes (1997), Amsterdam: Elsevier, Amsterdam · Zbl 0874.94001
[18] Davydov, AA, Constructions and families of covering codes and saturated sets of points in projective geometry, IEEE Trans. Inf. Theory, 41, 6, 2071-2080 (1995) · Zbl 0845.94022 · doi:10.1109/18.476339
[19] Davydov, AA; Giulietti, M.; Marcugini, S.; Pambianco, F., Linear nonbinary covering codes and saturating sets in projective spaces, Adv. Math. Commun., 5, 1, 119-147 (2011) · Zbl 1229.94056 · doi:10.3934/amc.2011.5.119
[20] Davydov, AA; Marcugini, S.; Pambianco, F., On saturating sets in projective spaces, J. Comb. Theory Ser. A, 103, 1, 1-15 (2003) · Zbl 1036.51006 · doi:10.1016/S0097-3165(03)00052-9
[21] Davydov, AA; Östergård, PR, On saturating sets in small projective geometries, Eur. J. Comb., 21, 5, 563-570 (2000) · Zbl 0971.51004 · doi:10.1006/eujc.1999.0373
[22] Delsarte, P., Four fundamental parameters of a code and their combinatorial significance, Inf. Control, 23, 5, 407-438 (1973) · Zbl 0274.94010 · doi:10.1016/S0019-9958(73)80007-5
[23] Delsarte, P., Bilinear forms over a finite field, with applications to coding theory, J. Comb. Theory Ser. A, 25, 3, 226-241 (1978) · Zbl 0397.94012 · doi:10.1016/0097-3165(78)90015-8
[24] Denaux, L., Constructing saturating sets in projective spaces using subgeometries, Designs, Codes and Cryptography, 1-32 (2021), Berlin: Springer, Berlin
[25] Dodunekov, S.; Simonis, J., Codes and projective multisets, Electron. J. Comb., 5, 1, R37 (1998) · Zbl 0928.94009 · doi:10.37236/1375
[26] Gabidulin, E., Theory of codes with maximum rank distance, Probl. Peredachi Inform., 21, 1, 3-16 (1985) · Zbl 0585.94013
[27] Gadouleau, M.: Algebraic codes for random linear network coding. Lehigh University (2009)
[28] Gadouleau, M.; Yan, Z., Packing and covering properties of rank metric codes, IEEE Trans. Inf. Theory, 54, 9, 3873-3883 (2008) · Zbl 1322.94121 · doi:10.1109/TIT.2008.928284
[29] Gruica, A., Ravagnani, A., Sheekey, J., Zullo, F.: Generalised scattered subspaces. arXiv preprint arXiv:2207.01027 (2022)
[30] Héger, T.; Nagy, ZL, Short minimal codes and covering codes via strong blocking sets in projective spaces, IEEE Trans. Inf. Theory, 68, 2, 881-890 (2021) · Zbl 1489.94141 · doi:10.1109/TIT.2021.3123730
[31] Huffman, WC; Pless, V., Fundamentals of Error-Correcting Codes (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1099.94030 · doi:10.1017/CBO9780511807077
[32] Jurrius, R.; Pellikaan, R., On defining generalized rank weights, Adv. Math. Commun., 11, 1, 225 (2017) · Zbl 1357.94082 · doi:10.3934/amc.2017014
[33] Lia, S., Longobardi, G., Marino, G., Trombetti, R.: Short rank-metric codes and scattered subspaces. arXiv preprint arXiv:2306.01315 (2023)
[34] Lunardon, G., Normal spreads, Geom. Dedicata, 75, 3, 245-261 (1999) · Zbl 0944.51004 · doi:10.1023/A:1005052007006
[35] Lunardon, G.; Trombetti, R.; Zhou, Y., Generalized twisted Gabidulin codes, J. Comb. Theory Ser. A, 159, 79-106 (2018) · Zbl 1427.94105 · doi:10.1016/j.jcta.2018.05.004
[36] Napolitano, V.; Polverino, O.; Santonastaso, P.; Zullo, F., Two pointsets in PG(2, \(q^n)\) and the associated codes, Adv. Math. Commun., 17, 1, 227-245 (2023) · Zbl 1530.51002 · doi:10.3934/amc.2022006
[37] Napolitano, V., Zullo, F.: Codes with few weights arising from linear sets. Adv. Math. Commun. 17(2) (2023) · Zbl 1527.51003
[38] Polverino, O., Linear sets in finite projective spaces, Discrete Math., 310, 22, 3096-3107 (2010) · Zbl 1228.51008 · doi:10.1016/j.disc.2009.04.007
[39] Randrianarisoa, TH, A geometric approach to rank metric codes and a classification of constant weight codes, Des. Codes Crypt., 88, 1331-1348 (2020) · Zbl 1450.94053 · doi:10.1007/s10623-020-00750-x
[40] Roth, RM, Maximum-rank array codes and their application to crisscross error correction, IEEE Trans. Inf. Theory, 37, 2, 328-336 (1991) · Zbl 0721.94012 · doi:10.1109/18.75248
[41] Segre, B., Curve razionali normali ek-archi negli spazi finiti, Ann. Mat., 39, 1, 357-379 (1955) · Zbl 0066.14001 · doi:10.1007/BF02410779
[42] Sheekey, J., A new family of linear maximum rank distance codes, Adv. Math. Commun., 10, 3, 475 (2016) · Zbl 1348.94087 · doi:10.3934/amc.2016019
[43] Tang, C.; Qiu, Y.; Liao, Q.; Zhou, Z., Full characterization of minimal linear codes as cutting blocking sets, IEEE Trans. Inform. Theory, 67, 6, 3690-3700 (2021) · Zbl 1475.94198 · doi:10.1109/TIT.2021.3070377
[44] Ughi, E., Saturated configurations of points in projective Galois spaces, Eur. J. Comb., 8, 3, 325-334 (1987) · Zbl 0645.51011 · doi:10.1016/S0195-6698(87)80039-2
[45] Zini, G.; Zullo, F., Scattered subspaces and related codes, Des. Codes Crypt., 89, 8, 1853-1873 (2021) · Zbl 1469.51006 · doi:10.1007/s10623-021-00891-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.