×

The stable behavior of the augmentation quotients of the groups of order \(p^5\). I. (English) Zbl 1348.20005

Let \(G\) be a finite group, \(\mathbb ZG\) its integral group ring, \(\Delta\) its augmentation ideal, \(\Delta^n\) its powers, \(Q_n=\Delta^n/\Delta^{n+1}\) the \(n\)-th augmentation quotient as quotient of additive groups. We say that \(Q_n\) has the stable behaviour \(\{Q_i\mid n_0\leq i\leq n_0+\pi-1\}\) if for some least positive integers \(n_0\) and \(\pi\), \(Q_n\cong Q_{n+\pi}\) for all \(n\geq n_0\). By the classical result of F. Bachmann and L. Grünenfelder [J. Pure Appl. Algebra 5, 253-264 (1974; Zbl 0301.16011)], \(Q_n\) has the stable behaviour for nilpotent \(G\). The stable behaviour \(\{Q_i\mid n_0\leq i\leq n_0+\pi-1\}\) has already been described for finite abelian \(p\)-groups, for nonabelian \(G\) of order \(p\), \(p^2\), \(p^3\), \(p^4\) in a series of three papers, the third one is [K.-I. Tahara and T. Yamada, Jpn. J. Math., New Ser. 11, 109-130 (1985; Zbl 0584.20003)], \(2^5\) by G. Losey and N. Losey [Contemp. Math. 33, 412-435 (1984; Zbl 0556.20007)], for the semidihedral 2-group by J. Nan and H. Zhao [Czech. Math. J. 62, No. 1, 279-292 (2012; Zbl 1249.20004)].
There are 64 isomorphism classes of nonabelian groups \(G\) of order \(p^5\) for an odd prime \(p\), the author describes the stable behaviour \(\{Q_i\mid n_0\leq i\leq n_0+\pi-1\}\) of the augmentation quotients of \(\mathbb ZG\) in all these cases.

MSC:

20C05 Group rings of finite groups and their modules (group-theoretic aspects)
20D15 Finite nilpotent groups, \(p\)-groups
16S34 Group rings
20F14 Derived series, central series, and generalizations for groups
Full Text: DOI

References:

[1] DOI: 10.1016/0022-4049(74)90036-X · Zbl 0301.16011 · doi:10.1016/0022-4049(74)90036-X
[2] DOI: 10.1016/j.aim.2003.11.002 · Zbl 1068.16032 · doi:10.1016/j.aim.2003.11.002
[3] DOI: 10.1016/j.jalgebra.2010.08.020 · Zbl 1232.20006 · doi:10.1016/j.jalgebra.2010.08.020
[4] Horibe K, Japan. J. Math. 10 pp 137– (1984)
[5] James, Mathematics of Computation 34 (150) pp 613– (1980)
[6] DOI: 10.1017/S0305004100055675 · Zbl 0398.20010 · doi:10.1017/S0305004100055675
[7] DOI: 10.1016/0021-8693(79)90087-5 · Zbl 0425.20004 · doi:10.1016/0021-8693(79)90087-5
[8] Losey N, RI pp 412– (1984)
[9] Parmenter, Algebra Colloq. 8 pp 121– (2001)
[10] DOI: 10.1080/00927877708822160 · Zbl 0387.20003 · doi:10.1080/00927877708822160
[11] DOI: 10.1090/S0002-9904-1977-14435-2 · Zbl 0386.20001 · doi:10.1090/S0002-9904-1977-14435-2
[12] Tahara T, Japan. J. Math. 10 pp 159– (1984)
[13] Tahara T, Japan. J. Math. 11 pp 109– (1985)
[14] DOI: 10.1023/A:1017572832381 · Zbl 0990.16024 · doi:10.1023/A:1017572832381
[15] DOI: 10.1007/s100110300002 · Zbl 1034.20006 · doi:10.1007/s100110300002
[16] DOI: 10.1080/00927870902897962 · Zbl 1182.16019 · doi:10.1080/00927870902897962
[17] DOI: 10.1080/00927870903095616 · Zbl 1206.16017 · doi:10.1080/00927870903095616
[18] Zhou H, Chinese Journal of Contemporary Mathematics 31 (5) pp 531– (2010)
[19] DOI: 10.1142/S1005386712000090 · Zbl 1239.20004 · doi:10.1142/S1005386712000090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.