×

Solutions of the loop equations of a class of generalized Frobenius manifolds. (English) Zbl 07923628

Summary: We prove the existence and uniqueness of solution of the loop equation associated with a semisimple generalized Frobenius manifold with non-flat unity, and show, for a particular example of one-dimensional generalized Frobenius manifold, that the deformation of the Principal Hierarchy induced by the solution of the loop equation is the extended \(q\)-deformed KdV hierarchy.

MSC:

37Kxx Dynamical system aspects of infinite-dimensional Hamiltonian and Lagrangian systems
53Dxx Symplectic geometry, contact geometry
81Txx Quantum field theory; related classical field theories

References:

[1] Adler, M., On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-de Vries type equations, Invent. Math., 50, 219-248, 1979 · Zbl 0393.35058 · doi:10.1007/BF01410079
[2] Arsie, A.; Buryak, A.; Lorenzoni, P.; Rossi, P., Flat F-manifolds, F-CohFTs, and integrable hierarchies, Commun. Math. Phys., 388, 291-328, 2021 · Zbl 1489.37083 · doi:10.1007/s00220-021-04109-8
[3] Arsie, A.; Buryak, A.; Lorenzoni, P.; Rossi, P., Semisimple flat F-manifolds in higher genus, Commun. Math. Phys., 397, 141-197, 2023 · Zbl 1517.53078 · doi:10.1007/s00220-022-04450-6
[4] Bakalov, B.; Milanov, T., \({\cal{W} } \)-constraints for the total descendant potential of a simple singularity, Compos. Math., 149, 840-888, 2013 · Zbl 1277.53094 · doi:10.1112/S0010437X12000668
[5] Boiti, M.; Pempinelli, F.; Prinari, B.; Spire, A., An integrable discretization of KdV at large times, Inverse Probl., 17, 515-526, 2001 · Zbl 0981.35067 · doi:10.1088/0266-5611/17/3/310
[6] Boiti, M.; Bruschi, M.; Pempinelli, F.; Prinari, B., A discrete Schrödinger spectral problem and associated evolution equations, J. Phys. A, 36, 139-149, 2003 · Zbl 1067.39032 · doi:10.1088/0305-4470/36/1/309
[7] Brini, A., The local Gromov-Witten theory of \(\mathbb{C}\mathbb{P}^1\) and integrable hierarchies, Commun. Math. Phys., 313, 571-605, 2012 · Zbl 1261.14029 · doi:10.1007/s00220-012-1517-9
[8] Brini, A.; Carlet, G.; Rossi, P., Integrable hierarchies and the mirror model of local \(\mathbb{C}\mathbb{P}^1\), Physica D, 241, 2156-2167, 2012 · Zbl 1322.37030 · doi:10.1016/j.physd.2011.09.011
[9] Buryak, A.; Posthuma, H.; Shadrin, S., A polynomial bracket for the Dubrovin-Zhang hierarchies, J. Differ. Geom., 92, 153-185, 2012 · Zbl 1259.53079 · doi:10.4310/jdg/1352211225
[10] Buryak, A., Double ramification cycles and integrable hierarchies, Commun. Math. Phys., 336, 1085-1107, 2015 · Zbl 1329.14103 · doi:10.1007/s00220-014-2235-2
[11] Buryak, A.; Guéré, J.; Rossi, P., DR/DZ equivalence conjecture and tautological relations, Geom. Topol., 23, 3537-3600, 2019 · Zbl 1469.14065 · doi:10.2140/gt.2019.23.3537
[12] Buryak, A.; Rossi, P.; Shadrin, S., Towards a bihamiltonian structure for the double ramification hierarchy, Lett. Math. Phys., 111, 13, 2021 · Zbl 1461.14034 · doi:10.1007/s11005-020-01341-6
[13] Carlet, G., The extended bigraded Toda hierarchy, J. Phys. A, 39, 9411-9435, 2006 · Zbl 1096.37041 · doi:10.1088/0305-4470/39/30/003
[14] Carlet, G.; Dubrovin, B.; Zhang, Y., The extended Toda hierarchy, Mosc. Math. J., 4, 313-332, 2004 · Zbl 1076.37055 · doi:10.17323/1609-4514-2004-4-2-313-332
[15] Carlet, G.; Posthuma, H.; Shadrin, S., Deformations of semisimple Poisson pencils of hydrodynamic type are unobstructed, J. Differ. Geom., 108, 63-89, 2018 · Zbl 1387.53105 · doi:10.4310/jdg/1513998030
[16] Dubrovin, B., Integrable systems in topological field theory, Nucl. Phys. B, 379, 627-689, 1992 · doi:10.1016/0550-3213(92)90137-Z
[17] Dubrovin, B., Integrable Systems and Classification of 2-Dimensional Topological Field Theories. Progress in Mathematics, 313-359, 1993, Boston: Birkhäuser, Boston · Zbl 0824.58029
[18] Dubrovin, B.: Geometry of 2D topological field theories. In: Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Mathematics, vol. 1620, pp. 120-348. Springer, Berlin (1996) · Zbl 0841.58065
[19] Dubrovin, B.: Painlevé transcendents in two-dimensional topological field theory. In: The Painlevé Property, CRM Series in Mathematical Physics, pp. 287-412. Springer, New York (1999) · Zbl 1026.34095
[20] Dubrovin, B.; Zhang, Y., Bi-Hamiltonian hierarchies in 2D topological field theory at one-loop approximation, Commun. Math. Phys., 198, 311-361, 1998 · Zbl 0923.58060 · doi:10.1007/s002200050480
[21] Dubrovin, B., Zhang Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants. eprint arXiv:math/0108160 (2001)
[22] Dubrovin, B.; Zhang, Y., Virasoro symmetries of the extended Toda hierarchy, Commun. Math. Phys., 250, 161-193, 2004 · Zbl 1071.37054 · doi:10.1007/s00220-004-1084-9
[23] Dubrovin, B.; Liu, S-Q; Zhang, Y., On Hamiltonian perturbations of hyperbolic systems of conservation laws. I. Quasi-triviality of bi-Hamiltonian perturbations, Commun. Pure Appl. Math., 59, 559-615, 2006 · Zbl 1108.35112 · doi:10.1002/cpa.20111
[24] Dubrovin, B.; Liu, S-Q; Zhang, Y., Frobenius manifolds and central invariants for the Drinfeld-Sokolov biHamiltonian structures, Adv. Math., 219, 780-837, 2008 · Zbl 1153.37032 · doi:10.1016/j.aim.2008.06.009
[25] Dubrovin, B.; Liu, S-Q; Yang, D.; Zhang, Y., Hodge integrals and tau-symmetric integrable hierarchies of Hamiltonian evolutionary PDEs, Adv. Math., 293, 382-435, 2016 · Zbl 1335.53114 · doi:10.1016/j.aim.2016.01.018
[26] Dubrovin, B.; Liu, S-Q; Yang, D.; Zhang, Y., Hodge-GUE correspondence and the discrete KdV equation, Commun. Math. Phys., 379, 461-490, 2020 · Zbl 1455.37056 · doi:10.1007/s00220-020-03846-6
[27] Dubrovin, B.; Liu, S-Q; Zhang, Y., Bihamiltonian cohomologies and integrable hierarchies II: the tau structures, Commun. Math. Phys., 361, 467-524, 2018 · Zbl 1403.37072 · doi:10.1007/s00220-018-3176-y
[28] Faddeev, L.; Takhtajan, L., Hamiltonian Methods in the Theory of Solitons, 1986, Berlin: Springer, Berlin · Zbl 0632.58003
[29] Frenkel, E., Deformations of the KdV hierarchy and related soliton equations, Int. Math. Res. Not., 1996, 55-76, 1996 · Zbl 0860.17033 · doi:10.1155/S1073792896000062
[30] Fan, H.; Jarvis, T.; Ruan, Y., The Witten equation, mirror symmetry, and quantum singularity theory, Ann. Math., 178, 1-106, 2013 · Zbl 1310.32032 · doi:10.4007/annals.2013.178.1.1
[31] Getzler, E.: The Toda conjecture. In: Symplectic Geometry and Mirror Symmetry (Seoul, 2000), pp. 51-79. World Scientific Publishing, River Edge, NJ (2001) · Zbl 1047.37046
[32] Getzler, E., The jet-space of a Frobenius manifold and higher-genus Gromov-Witten invariants, Aspects Math., E36, 45-89, 2004 · Zbl 1093.53094 · doi:10.1007/978-3-322-80236-1_3
[33] Givental, A.; Milanov, T., Simple Singularities and Integrable Hierarchies. Progress in Mathematics, 173-201, 2005, Boston: Birkhäuser, Boston · Zbl 1075.37025
[34] Hernández Iglesias, F.; Shadrin, S., Bi-Hamiltonian recursion, Liu-Pandharipande relations, and vanishing terms of the second Dubrovin-Zhang bracket, Commun. Math. Phys., 392, 55-87, 2022 · Zbl 1510.37102 · doi:10.1007/s00220-022-04341-w
[35] Hall, B., Lie Groups, Lie Algebras, and Representations. An Elementary Introduction. Graduate Texts in Mathematics, 2015, Cham: Springer, Cham · Zbl 1316.22001 · doi:10.1007/978-3-319-13467-3
[36] Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function, Commun. Math. Phys., 147, 1-23, 1992 · Zbl 0756.35081 · doi:10.1007/BF02099526
[37] Kuperschmidt, B.A.: Discrete Lax equations and differential-difference calculus. Astérisque, 123 (1985) · Zbl 0565.58024
[38] Liu, QP; Wang, YQ, A note on a discrete Schrödinger spectral problem and associated evolution equations, Acta Math. Sci. Ser. A (Chin. Ed.), 26, 773-777, 2006 · Zbl 1137.37329
[39] Liu, S.-Q.: Lecture notes on bihamiltonian structures and their central invariants. In: B-model Gromov-Witten Theory. Trends in Mathemaics, pp. 573-625. Birkhäuser, Cham (2018) · Zbl 1422.53002
[40] Liu, S-Q; Zhang, Y., Bihamiltonian cohomologies and integrable hierarchies I: a special case, Commun. Math. Phys., 324, 897-935, 2013 · Zbl 1318.37019 · doi:10.1007/s00220-013-1822-y
[41] Liu, S.-Q., Qu, H., Zhang, Y.: Generalized Frobenius manifolds with non-flat unity and integrable hierarchies. eprint arXiv:2209.00483 (2022)
[42] Liu, S-Q; Yang, D.; Zhang, Y.; Zhou, C., The Hodge-FVH correspondence, J. Reine Angew. Math., 775, 259-300, 2021 · Zbl 1470.37087 · doi:10.1515/crelle-2020-0051
[43] Liu, S-Q; Yang, D.; Zhang, Y.; Zhou, C., The loop equation for special cubic Hodge integrals, J. Differ. Geom., 121, 341-368, 2022 · Zbl 1497.14014 · doi:10.4310/jdg/1659987894
[44] Liu, S.-Q., Wang, Z., Zhang, Y.: Linearization of Virasoro symmetries associated with semisimple Frobenius manifolds. eprint arXiv:2109.01846 (2021)
[45] Liu, S-Q; Zhang, Y.; Zhou, C., Fractional Volterra hierarchy, Lett. Math. Phys., 108, 261-283, 2018 · Zbl 1410.37061 · doi:10.1007/s11005-017-1006-3
[46] Okounkov, A.; Pandharipande, R., Virasoro constraints for target curves, Invent. Math., 163, 47-108, 2006 · Zbl 1140.14047 · doi:10.1007/s00222-005-0455-y
[47] Shabat, A.: Dressing chains and lattices. In: Proceedings of the Workshop on Nonlinearity, Integrability and All That: Twenty Years After NEEDS’79, pp. 331-342. World Scientific Publishing, River Edge, NJ (2000) · Zbl 0965.35163
[48] Witten, E.: Two dimensional gravity and intersection theory on moduli space. In: Surveys in Differential Geometry (Cambridge, MA, 1990), pp. 243-310. Lehigh University, Bethlehem, PA (1991) · Zbl 0757.53049
[49] Zhang, Y., On the \(CP^1\) topological sigma model and the Toda lattice hierarchy, J. Geom. Phys., 40, 215-232, 2002 · Zbl 1001.37066 · doi:10.1016/S0393-0440(01)00036-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.