×

A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials. (English) Zbl 1348.74030

Summary: Bi-modulus materials with different mechanical responses in tension and compression are often found in civil, composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equation of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three parametric variables introduced in the principal stress directions. The original problem is transformed into a standard linear complementarity problem (LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke’s algorithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent convergence behavior compared with traditional iterative schemes. Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.

MSC:

74A50 Structured surfaces and interfaces, coexistent phases
Full Text: DOI

References:

[1] Patel, B.P., Gupta, S.S., Sarda, R.: Free flexural vibration behavior of bimodular material angle-ply laminated composite plates. J. Sound Vib. 286, 167-186 (2005) · doi:10.1016/j.jsv.2004.10.004
[2] Khan, K., Patel, B.P., Nath, Y.: Vibration analysis of bimodulus laminated cylindrical panels. J. Sound Vib. 321, 166-183 (2009) · doi:10.1016/j.jsv.2008.09.017
[3] Patel, B.P., Khan, K., Nath, Y.: A new constitutive model for bimodular laminated structures: Application to free vibrations of conical/cylindrical panels. Compos. Struct. 110, 183-191 (2014) · doi:10.1016/j.compstruct.2013.11.008
[4] Ambartsumyan, S.A.: Elasticity Theory of Different Moduli. China Railway Publishing House, Beijing (1986)
[5] Mazars, J., Berthaud, Y., Ramtani, S.: The unilateral behavior of damaged concrete. Eng. Fract. Mech. 35, 629-635 (1990) · doi:10.1016/0013-7944(90)90145-7
[6] Gall, K., Sehitoglu, H., Chumlyakov, Y.I., et al.: Tension-compression asymmetry of the stress-strain response in aged single crystal and polycrystalline NiTi. Acta Mater. 47, 1203-1217 (1999) · doi:10.1016/S1359-6454(98)00432-7
[7] Bertoldi, K., Bigoni, D., Drugan, W.J.: Nacre: An orthotropic and bimodular elastic material. Compos. Sci. Technol. 68, 1363-1375 (2008) · doi:10.1016/j.compscitech.2007.11.016
[8] Ding, H.L., Yang, B.E.: New numerical method for tow-dimensional partially wrinkled membranes. AIAA J. 41, 125-132 (2003) · doi:10.2514/2.1922
[9] Ding, H.L., Yang, B.E.: The modeling and numerical analysis of wrinkled membranes. Int. J. Numer. Meth. Eng. 58, 1785-1801 (2003) · Zbl 1032.74664 · doi:10.1002/nme.832
[10] Zhang, L., Gao, Q., Zhang, H.W.: Analysis of 2-D bimodular materials and wrinkled membranes based on the parametric variational principle and co-rotational approach. Int. J. Numer. Meth. Eng. 98, 721-746 (2014) · Zbl 1352.74460 · doi:10.1002/nme.4649
[11] Sultan, C.: Tensegrity: 60 years of art, science, and engineering. Adv. Appl. Mech. 43, 69-145 (2009) · doi:10.1016/S0065-2156(09)43002-3
[12] Zhang, L., Gao, Q., Zhang, H.W.: An efficient algorithm for mechanical analysis of bimodular truss and tensegrity structures. Int. J. Mech. Sci. 70, 57-68 (2013) · doi:10.1016/j.ijmecsci.2013.02.002
[13] Jones, R.M.: Stress-strain relation for materials with different moduli in tension and compression. AIAA J. 15, 16-23 (1977) · doi:10.2514/3.7297
[14] Vijayakumar, K., Rao, K.P.: Stress-strain relations for composites with different stiffness in tension and compression. Comput. Mech. 2, 167-175 (1987) · Zbl 0699.73046
[15] Yao, W.J., Ye, Z.M.: Analytical solution of bending-compression column using different tension-compression modulus. Appl. Math. Mech-Engl. 25, 983-993 (2004) · Zbl 1115.74343
[16] Yao, W.J., Ye, Z.M.: Analytical solution for bending beam subject to lateral force with different modulus. Appl. Math. Mech-Engl. 25, 1107-1117 (2004) · Zbl 1137.74390 · doi:10.1007/BF02439863
[17] He, X.T., Sun, J.Y., Wang, Z.X., et al.: General perturbation solution of large-deflection circular plate with different moduli in tension and compression under various edge conditions. Int. J. Non-Linear Mech. 55, 110-119 (2013) · doi:10.1016/j.ijnonlinmec.2013.05.008
[18] Zhang, Y.Z., Wang, Z.F.: The finite element method for elasticity with different moduli in tension and compression. Comput. Struct. Mech. Appl. 6, 236-254 (1989)
[19] Yang, H.T., Zhu, Y.L.: Solving elasticity problems with bi-modulus via a smoothing technique. Chin. J. Comput. Mech. 23, 19-23 (2006)
[20] Yang, H.T., Wang, B.: An analysis of longitudinal vibration of bimodular rod via smoothing function approach. J. Sound Vib. 317, 419-431 (2008) · doi:10.1016/j.jsv.2008.03.060
[21] He, X.T., Zheng, Z.L., Sun, J.Y., et al.: Convergence analysis of a finite element method based on different moduli in tension and compression. Int. J. Solids Struct. 46, 3734-3740 (2009) · Zbl 1183.74282 · doi:10.1016/j.ijsolstr.2009.07.003
[22] Yang, H.T., Li, Y.X., Xue, Y.N.: Interval uncertainty analysis of elastic bimodular truss structures. Inverse Probl. Sci. En. 23, 578-589 (2015) · doi:10.1080/17415977.2014.922078
[23] Du, Z.L., Guo, X.: Variational principles and the related bounding theorems for bi-modulus materials. J. Mech. Phys. Solids 73, 183-211 (2014) · Zbl 1349.74293
[24] Zhong, W.X., Zhang, H.W., Wu, C.W.: Parametric Variational Principle and Applications in Engineering. Science Press, Beijing (1997)
[25] Zhang, H.W., He, S.Y., Li, X.S.: Two aggregate-function-based algorithms for analysis of 3D frictional contact by linear complementarity problem formulation. Comput. Methods Appl. Mech. Eng. 194, 5139-5158 (2005) · Zbl 1092.74051 · doi:10.1016/j.cma.2005.01.002
[26] Liu, T., Deng, Z.C.: Design optimization for truss structures under elasto-plastic loading condition. Acta Mech. Solida Sin. 19, 264-274 (2006) · doi:10.1007/s10338-006-0632-6
[27] Zhang, H.W., Zhang, X.W., Chen, J.S.: A new algorithm for numerical solution of dynamic elastic-plastic hardening and softening problems. Comput. Struct. 81, 1739-1749 (2003) · Zbl 1045.74503 · doi:10.1016/S0045-7949(03)00167-6
[28] Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992) · Zbl 0757.90078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.