×

Fracture analysis for bi-modular materials. (English) Zbl 1473.74120

Summary: Due to the differences in Young’s moduli under the tensile and compressive loadings for a rock-like and asphalt-mixture materials, the analysis becomes difficult as all coefficients in Hook’s law are dependent on the stress state in the field. In this paper, the meshless method is formulated for the first time to evaluate a cracked structure made of bimodular materials. In general, there are four stress zones in the field determined by the principal stresses. It is known that for classical elasticity (single modulus material), the stresses are singular at the crack tip described by William’s series. For the pure mode I fracture, it is proved that the solutions for the stress and displacement by William’s series are still valid for bimodular materials as there is only first kind zone in the vicinity of the crack tip. With the utilization of the Lagrange series, the meshless Finite Block Method (FBM) is demonstrated to deal with cracked structures with bimodular materials. The numerical solutions of the partial differential equations with variable coefficients are solved in a strong form by using the iterative technique. Numerical examples are demonstrated to verify the degree of accuracy and convergence with Finite Element Method (FEM) with very fine mesh.

MSC:

74R10 Brittle fracture
74S99 Numerical and other methods in solid mechanics
74G70 Stress concentrations, singularities in solid mechanics

References:

[1] M. Abbaszadeh, M. Dehghan. A meshless numerical investigation based on the RBF-QR approach for elasticity problems, AUT J. Math. Comput. (AJMC), 10.22060/ajmc.2019.15990.1019.
[2] Ambartsumyan, S. A., The basic equations of the theory of elasticity for materials with different tensile and compressive strengths, Mekhanika Tverd. Tela Kiev., 2, 44-53 (1966)
[3] Ambartsumyan, S. A., The basic equations and relations of the different-modulus theory of elasticity of an anisotropic body, Mech. Solids, 4, 3, 48-56 (1969)
[4] Ambartsumyan, S. A., Different Modulus Theory of Elasticity (In Russian) (Monograph) (1982), Moscow Science Publications, Physics and Mathematical Literature
[5] Ambartsumyan, S. A.; Khachatryan, A. A., The basic equations of the theory of elasticity for materials with different stiffness in tension and compression, Mech. Solids, 1, 29-34 (1966)
[6] Atluri, S. N., The Meshless Method (MLPG) for Domain and BIE Discretizations (2004), Tech Science Press: Tech Science Press Forsyth, GA, USA · Zbl 1105.65107
[7] Atluri, S. N.; Zhu, T., A new meshless local Peyrov-Galerkin (MLPG) approach to nonlinear problems in computational modelling and simulation, Comput. Model. Simulat. Eng., 3, 187-196 (1998)
[8] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin method, Int. J. Numer. Methods Eng., 37, 229-256 (1994) · Zbl 0796.73077
[9] Bert, C. W.; Gordaninejad, F., Transverse effects in bimodular composite laminates, J. Compos. Mater., 17, 4, 282-298 (1983)
[10] Chen, C. S.; Cho, H. A.; Golberg, M. A., Some comments on mitigating the ill-conditioning of the method of fundamental solutions, Eng. Anal. Bound. Elem., 30, 405-410 (2006) · Zbl 1187.65136
[11] Dehghan, M.; Abbaszadeh, M., Proper orthogonal decomposition variational multiscale element free Galerkin (POD-VMEFG) meshless method for solving incompressible Navier-Stokes equation, Comput. Methods Appl. Mech. Eng., 311, 856-888 (2016) · Zbl 1439.76060
[12] Dehghan, M.; Abbaszadeh, M., A finite element method for the numerical solution of Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives, Eng. Comput., 33, 587-605 (2017)
[13] Dehghan, M.; Abbaszadeh, M., Variational multiscale element-free Galerkin method combined with the moving Kriging interpolation for solving some partial differential equations with discontinuous solutions, Comput. Appl. Math., 37, 3869-3905 (2018) · Zbl 1404.65084
[14] Du, Z. L.; Guo, X., Variational principles and the related bounding theorems for bi-modulus materials, J. Mech. Phys. Solids, 73, 183-211 (2014) · Zbl 1349.74293
[15] Du, Z. L.; Zhang, Y. P.; Zhang, W. S., A new computational framework for materials with different mechanical responses in tension and compression and its applications, Int. J. Solids Struct., 100, 54-73 (2016)
[16] Feng, G.; Li, Ming; Chen, C. S., On the ill-conditioning of the method of fundamental solutions for non-harmonic boundary data, Eng. Anal. Bound. Elem., 41, 98-102 (2014) · Zbl 1297.65195
[17] Fett, T., Stress Intensity Factors, T-Stresses, Weight Functions (2008), University of Karlsruhe: University of Karlsruhe Karlsruhe, Germany
[18] He, X.; Chen, S.; Sun, J., Elasticity solution of simple beams with different modulus under uniformly distributed load, Eng. Mech., 24, 51-56 (2007)
[19] He, X.; Zheng, Z.; Chen, S., Approximate elasticity solution of bending compression column with different tension-compression moduli, J. Chongqing Univ., 3, 023 (2008)
[20] He, X. T.; Zheng, Z. L.; Sun, J. Y., Convergence analysis of a finite element method based on different moduli in tension and compression, Int. J. Solids Struct., 46, 20, 3734-3740 (2009) · Zbl 1183.74282
[21] Huang, T.; Pan, Q. X.; Jin, J.; Zheng, J. L.; Wen, P. H., Continuous constitutive model for bimodulus materials with meshless approach, Appl. Math. Model., 66, 41-58 (2019) · Zbl 1481.74542
[22] Jones, R. M., Stress-strain relations for materials with different moduli in tension and compression, AIAA J., 15, 1, 16-23 (1977)
[23] Kamranian, M.; Dehghan, M.; Tatari, M., An adaptive meshless local Petrov-Galerkin method based on a posteriori error estimation for the boundary layer problems, Appl. Numer. Math., 111, 181-196 (2017) · Zbl 1353.65121
[24] Li, M.; Wen, P. H., Finite block method for transient heat conduction analysis in functionally graded media, Int. J. Numer. Methods Eng., 99, 5, 372-390 (2014) · Zbl 1352.74097
[25] Li, M.; Lei, M.; Munjiza, A.; Wen, P. H., Frictional contact analysis of functionally graded materials with Lagrange finite block method, Int. J. Numer. Methods Eng., 103, 6, 391-412 (2015) · Zbl 1352.74208
[26] Li, M.; Meng, L. X.; Hinneh, P.; Wen, P. H., Finite block method for interface cracks, Eng. Fract. Mech., 156, 25-40 (2016)
[27] Liu, X. B.; Zhang, Y. Z., Modulus of elasticity in shear and accelerate con- vergence of different extension-compression elastic modulus finite element method, J. Dalian Univ. Technolgy, 40, 526-530 (2000) · Zbl 1168.74458
[28] Liu, W. K.; Jun, S.; Zhang, Y., Reproducing kernel particle methods, Int. J. Numer. Methods Eng., 20, 1081-1106 (1995) · Zbl 0881.76072
[29] Medri, G., A nonlinear elastic model for isotropic materials with different behavior in tension and compression, ASME J. Eng. Mater. Technol., 104, 1, 26-28 (1982)
[30] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech., 10, 307-318 (1992) · Zbl 0764.65068
[31] Pan, Q. X., A Three-Dimensional Finite Element Analysis for Bimodular Rock-like and Asphalt-Mixture Materials (2018), Changsha University of Science and Technology, PhD thesis
[32] Reddy, J. N.; Chao, W. C., Nonlinear bending of bimodular-material plates, Int. J. Solids Struct., 19, 3, 229-237 (1983) · Zbl 0502.73059
[33] Rooke, D. P.; Cartwright, D. J., Compendium of Stress Intensity Factors (1976), H.M.S.O.: H.M.S.O. London
[34] Schaback, R., On the efficiency of interpolation by radial basis functions, (Le Mehaute, A.; Rabut, C.; Schumaker, L. L., Surface Fitting and Multiresolution Methods (1997), Vanderbilt University Press: Vanderbilt University Press Nashville TN), 309-318 · Zbl 0937.65013
[35] Sladek, J.; Sladek, V.; Atluri, S. N., Meshless Local Petrov-Galerkin method for heat conduction problem in an anisotropic medium, Comput. Model. Eng. Sci., 6, 309-318 (2004) · Zbl 1084.80002
[36] Sladek, V.; Sladek, J.; Tanaka, M.; Zhang, Ch., Local integral equation method for potential problems in functionally graded anisotropic materials, Eng. Anal. Bound. Elem., 29, 829-843 (2005) · Zbl 1182.74237
[37] Wen, P. H.; Aliabadi, M. H., Dual boundary element method for modelling curved crack paths, Int. J. Fract., 176, 1, 127-133 (2012)
[38] Wen, P. H.; Cao, P.; Korakianitis, T., Finite block method in elasticity, Eng. Anal. Bound. Elem., 46, 116-125 (2014) · Zbl 1297.65171
[39] Williams, M. L., On the stress distribution at the base of a stationary crack, J. Appl. Mech., 24, 109-114 (1957) · Zbl 0077.37902
[40] Yang, H. T.; Wang, B., An analysis of longitudinal vibration of bimodular rod via smoothing function approach, J. Sound Vib., 317, 3, 419-431 (2008)
[41] Yang, H. T.; Xu, M. L., Solving inverse bimodular problems via artificial neutral network, Inverse Problems Sci. Eng., 17, 999-1017 (2009) · Zbl 1396.74056
[42] Yang, H. T.; Zhu, Y. L., Solving elasticity problems with bi-modulus via a smoothing technique, Chin. J. Comput. Mech., 23, 19-23 (2006)
[43] Yang, H. T.; Li, Y. X.; Xue, Y. N., Interval uncertainty analysis of elastic bimodular truss structures, Inverse Probl. Sci. Eng., 23, 4, 578-589 (2015)
[44] Yao, W. J.; Ye, Z. M., Analytical solution of bending-compression column using different tension-compression modulus, Appl. Math. Mech., 25, 983-993 (2004) · Zbl 1115.74343
[45] Zhang, Y. Z.; Wang, Z. F., The finite element method for elasticity with different moduli in tension and compression, Comput. Struct. Mech. Appl., 6, 236-246 (1989)
[46] Zhang, H. W.; Zhang, L.; Gao, Q., Numerical method for dynamic analysis of two-dimensional bimodular structures, AIAA J., 50, 9, 1933-1942 (2012)
[47] Zhang, L.; Gao, Q.; Zhang, H. W., An efficient algorithm for mechanical analysis of bimodular truss and tensegrity structures, Int. J. Mech. Sci., 70, 57-68 (2013)
[48] Zhang, L.; Gao, Q.; Zhang, H. W., Analysis of 2-D bimodular materials and wrinkled membranes based on the parametric variational principle and co-rotational approach, Int. J. Numer. Methods Eng., 98, 10, 721-746 (2014) · Zbl 1352.74460
[49] Zhang, L.; Zhang, H. W.; Wu, J., A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials, Acta Mech. Sin., 32, 3, 481-490 (2016) · Zbl 1348.74030
[50] Zhang, L.; Dong, K. J.; Zhang, H. T., A 3D PVP co-rotational formulation for large-displacement and small-strain analysis of bi-modulus materials, Finite Elem. Anal. Des., 110, 20-31 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.