×

Nonlinear large deformation problem of rectangular thin plates and its perturbation solution under cylindrical bending: transform from plate/membrane to beam/cable. (English) Zbl 1540.74087

Summary: The Föppl-von Kármán equations describing deformation of flexible thin plates are established on the basis of moderately large-deflection and small rotation angle. For many years, the equations have been regarded as a classical and effective model used for the analysis of flexible thin plate problems, and at the same time, this model has also been constantly evolving and improving. The improvements for the model, however, come mainly from properties of materials perspective, but seldom from the deformation of plate perspective. In this study, we revisit Föppl-von Kármán equations from the viewpoint of deformation concerning rotation angle. A new form for the classical equations without a small-rotation-angle assumption is derived, for the first time, by giving up the basic assumption that the sine function of the rotation angle equals to the first-order derivative of the corresponding displacement, thus improving the governing equations while enhancing the nonlinearity. The abandonment of the small-rotation-angle assumption reveals such a fact that the second-order derivative of displacement in classical equations originates from the curvature and twist of plates. Due to the complexity of the equations derived, its perturbation solution is obtained under cylindrical bending with two opposites fully fixed. Results indicate that via cylindrical bending, a two-dimensional plate or membrane problem is easily associated with a one-dimensional beam or cable problem. Results also show that the abandonment of the small-rotation-angle assumption will contribute to the free development of the deflection curve rotation of the plate, while at the same time, the deflection value will tend to decrease to agree with the deformation of the plate.
© 2022 Wiley-VCH GmbH.

MSC:

74K20 Plates
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics
Full Text: DOI

References:

[1] vonKármán, T.: Festigkeitsprobleme im Maschinenbau. In: KleinF. (ed.), MüllerC. (ed.) (eds.) Encyklopedie der Mathematischen Wissenschaften. B.G, pp. 311-385. Teubner, Leipzig (1910) · JFM 41.0907.02
[2] Timoshenko, S., Woinowsky‐Krieger, S.: Theory of Plates and Shells. McGraw‐Hill, New York (1959) · Zbl 0114.40801
[3] Meenen, J., Altenbach, H.: A consistent deduction of von Kármán‐type plate theories from three‐dimensional nonlinear continuum mechanics. Acta Mech.147, 1-17 (2001) · Zbl 1002.74060
[4] Luo, A.C.J.: An approximate theory for geometrically nonlinear thin plates. Int. J. Solids Struct.37, 7655-7670 (2000) · Zbl 0994.74041
[5] Mao, R., Lu, G., Wang, Z., Zhao, L.: Large‐deflection behavior of circular sandwich plates with metal foam‐core. Eur. J. Mech. A/Solids55, 57-66 (2016) · Zbl 1406.74445
[6] Golmakani, M.E., Alamatian, J.: Large‐deflection analysis of shear deformable radially functionally graded sector plates on two‐parameter elastic foundations. Eur. J. Mech. A/Solids42, 251-265 (2013) · Zbl 1406.74434
[7] Delfani, M.R.: Nonlinear elasticity of monolayer hexagonal crystals: theory and application to circular bulge test. Eur. J. Mech. A/Solids68, 117-132 (2018) · Zbl 1406.74101
[8] Duc, N.D., Cong, P.H., Quang, V.D.: Nonlinear dynamic and vibration analysis of piezoelectric eccentrically stiffened FGM plates in thermal environment. Int. J. Mech. Sci.115-116, 711-722 (2016)
[9] Duc, N.D., Quan, T.Q.: Nonlinear response of imperfect eccentrically stiffened FGM cylindrical panels on elastic foundation subjected to mechanical loads. Eur. J. Mech. A/Solids46, 60-71 (2014) · Zbl 1406.74470
[10] Duc, N.D.: Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells. Vietnam National University Press, Hanoi (2014)
[11] Duc, N.D., Kim, S.E., Chan, D.Q.: Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT. J. Thermal Stresses41, 331-365 (2018)
[12] Duc, N.D., Quan, T.Q.: Transient responses of functionally graded double curved shallow shells with temperature‐dependent material properties in thermal environment. Eur. J. Mech. A/Solids47, 101-123 (2014)
[13] Cong, P.H., Khanh, N.D., Khoa, N.D., Duc, N.D.: New approach to investigate nonlinear dynamic response of sandwich auxetic double curves shallow shells using TSDT. Compos. Struct.185, 455-465 (2018)
[14] Duc, N.D., Quan, T.Q., Khoa, N.D.: New approach to investigate nonlinear dynamic response and vibration of imperfect functionally graded carbon nanotube reinforced composite double curved shallow shells subjected to blast load and temperature. Aerosp. Sci. Technol.71, 360-372 (2017)
[15] Duc, N.D., Thang, P.T., Dao, N.T., Tac, H.V.: Nonlinear buckling of higher deformable S‐FGM thick circular cylindrical shells with metal‐ceramic‐metal layers surrounded on elastic foundations in thermal environment. Compos. Struct.121, 134-141 (2015)
[16] Shield, R.T., Im, S.: Small strain deformations of elastic beams and rods including large‐deflections. Z. Angew. Math. Phys.37, 491-513 (1986) · Zbl 0589.73039
[17] Föppl, A.: Vorlesungen über Technische Mechanik: Bd. Die wichtigsten Lehren der höheren Elastizitätstheorie, BG Teubnerv.5, 132-144 (1907) · JFM 38.0691.01
[18] Hencky, H.: Über den Spannungszustand in kreisrunden Platten mit verschwindender Biegungssteifigkeit. Zeitschrift für Mathematik und Physik63, 311-317 (1915) · JFM 45.1022.02
[19] Lian, Y.S., Sun, J.Y., Yang, Z.X., He, X.T., Zheng, Z.L.: Closed‐form solution of well‐known Hencky problem without small‐rotation‐angle assumption. Z. Angew. Math. Mech.96, 1434-1441 (2016) · Zbl 07775137
[20] Lian, Y.S., He, X.T., Liu, G.H., Sun, J.Y., Zheng, Z.L.: Application of perturbation idea to well‐known Hencky problem: a perturbation solution without small‐rotation‐angle assumption. Mech. Res. Commun.83, 32-46 (2017)
[21] Pagano, N.J.: Exact solutions for composite laminates in cylindrical bending. J. Compos. Mater.3, 398-411 (1969)
[22] Xue, Y., Jairazbhoy, V.A., Niu, X., Qu, J.: Large‐deflection of thin plates under certain mixed boundary conditions-cylindrical bending. J. Electron. Packag.125, 53-58 (2002)
[23] Jairazbhoy, V. A., Petukhov, P., Qu, J.: Large‐deflection of thin plates in cylindrical bending-non‐unique solutions. Int. J. Solids Struct.45, 3203-3218 (2008) · Zbl 1169.74471
[24] Bian, Z.G., Chen, W.Q., Lim, C.W., Zhang, N.: Analytical solutions for single‐ and multi‐span functionally graded plates in cylindrical bending. Int. J. Solids Struct.42, 6433-6456 (2005) · Zbl 1119.74468
[25] Yang, B., Ding, H.J., Chen, W.Q.: Elasticity solutions for functionally graded plates in cylindrical bending. Appl. Math. Mech. (Engl. Ed.)29, 999-1004 (2008) · Zbl 1148.74303
[26] Fallah, F., Nosier, A., Sharifi, M., Ghezelbash, F.: On perturbation method in mechanical, thermal and thermo‐mechanical loadings of plates: cylindrical bending of FG plates. Z. Angew. Math. Mech.96, 217-232 (2016) · Zbl 07775015
[27] Van Gorder, R.A.: Analytical method for the construction of solutions to the Föppl‐von Kármán equations governing deflections of a thin flat plate. Int. J. Non‐Linear Mech.47, 1-6 (2012)
[28] Van Gorder, R.A.: Asymptotic solutions for the Föppl‐von Kármán equations governing deflections of thin axisymmetric annular plates. Int. J. Non‐Linear Mech.91, 8-21 (2017)
[29] Vincent, J.J.: The bending of a thin circular plate. Phil. Mag.12, 185-196 (1931) · JFM 57.1060.03
[30] Chien, W.Z.: Large‐deflection of a circular clamped plate under uniform pressure. Chin. J. Phys.7, 102-113 (1947)
[31] Yeh, K.Y., Zhou, Y.H.: On solving high‐order solutions of Chien’s perturbation method to study convergence by computer. Appl. Math. Mech. (Engl. Ed.)7, 305-314 (1986) · Zbl 0659.73061
[32] Hu, H.C.: On the large‐deflection of a circular plate under combined action of uniformly distributed load and concentrated load at the center. Chin. J. Phys.10, 383-394 (1954)
[33] Schmidt, R., DaDeppo, D.A.: A new approach to the analysis of shells, plates and membranes with finite deflection. Int. J. Non‐Linear. Mech.9, 409-419 (1974) · Zbl 0296.73049
[34] Huang, C.: Large‐deflection of circular plate under compound load. Appl. Math. Mech. (Engl. Ed.)4, 791-804 (1983) · Zbl 0533.73056
[35] Chen, S.L., Kuang, J.C.: The perturbation parameter in the problem of large‐deflection of clamped circular plates. Appl. Math. Mech. (Engl. Ed.)2, 137-154 (1981) · Zbl 0628.73047
[36] He, X.T., Sun, J.Y., Wang, Z.X., ChenQ., Zheng, Z.L.: General perturbation solution of large‐deflection circular plate with different moduli in tension and compression under various edge conditions. Int. J. Non‐Linear Mech.55, 110-119 (2013)
[37] He, X.T., Cao, L., Li, Z.Y., Hu, X.J., Sun, J.Y.: Nonlinear large‐deflection problems of beams with gradient: a biparametric perturbation method. Appl. Math. Comput.219, 7493-7513 (2013) · Zbl 1457.74107
[38] He, X.T., Cao, L., Wang, Y.Z., Sun, J.Y., Zheng, Z.L.: A biparametric perturbation method for the Föppl‐von Kármán equations of bimodular thin plates. J. Math. Anal. Appl.455, 1688-1705 (2017) · Zbl 1432.74124
[39] Volmir, A.C.: Flexible Plates and Shells. LuW.D. (ed.), HuangZ.Y. (ed.), LuD.H. (ed.), Transl.), Science Press, Beijing (1959)
[40] Steigmann, D.J.: Thin‐plate theory for large elastic deformations. Int. J. Non‐Linear. Mech.42, 233-240 (2007) · Zbl 1200.74098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.