×

A moderate deviation principle for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises. (English) Zbl 1356.60100

The authors consider an incompressible Navier-Stokes equation \(u_t-\nu\Delta u+(u\cdot\nabla)u+\nabla p=f\) with homogeneous Dirichlet boundary condition on a bounded domain \(D\) in \(\mathbb R^2\). This equation is perturbed in a multiplicative way by a compensated Poisson random measure on a locally compact Polish space with the intensity measure \(\varepsilon^{-1}\lambda\otimes\vartheta\). If \(u\) denotes the solution of the unperturbed (deterministic) equation and \(u^\varepsilon\) is the solution of the perturbed (stochastic) equation for \(\varepsilon>0\), then a large deviation principle for \((u^\varepsilon-u)/a(\varepsilon)\) with speed \(\varepsilon a^{-2}(\varepsilon)\) is proved. Here, \(a\) is assumed to satisfy \(a(\varepsilon)\to 0\) and \(\varepsilon a^{-2}(\varepsilon)\to 0\) as \(\varepsilon\to 0\).

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60F10 Large deviations
60G51 Processes with independent increments; Lévy processes
60G57 Random measures
35Q30 Navier-Stokes equations

References:

[1] Amirdjanova, A.; Xiong, J., Large deviation principle for a stochastic Navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow, Discrete Contin. Dyn. Syst. Ser. B, 6, 4, 651-666 (2006) · Zbl 1132.60316
[2] Brzeźniak, Z.; Liu, W.; Zhu, J., Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Anal. Real World Appl., 17, 283-310 (2014) · Zbl 1310.60091
[4] Budhiraja, A.; Dupuis, P.; Maroulas, V., Variational representations for continuous time processes, Ann. Inst. Henri Poincaré B, Probab. Stat., 47, 3, 725-747 (2011) · Zbl 1231.60018
[5] Cardon-Weber, C., Large deviations for a Burgers’-type SPDE, Stochastic Process. Appl., 84, 53-70 (1999) · Zbl 0996.60073
[6] Cerrai, S.; Röckner, M., Large deviations for stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term, Ann. Probab., 32, 1100-1139 (2004) · Zbl 1054.60065
[7] Chen, X., The moderate deviations of independent random vectors in a Banach space, Chinese J. Appl. Probab. Statist., 7, 24-33 (1991) · Zbl 0952.60500
[8] De Acosta, A., Moderate deviations and associated Laplace approximations for sums of independent random vectors, Trans. Amer. Math. Soc., 329, 357-375 (1992) · Zbl 0751.60007
[9] Dembo, A.; Zeitouni, O., Large Deviations Techniques and Applications (2000), Springer-Verlag: Springer-Verlag New York · Zbl 0972.60006
[10] Ermakov, M., The sharp lower bound of asymptotic efficiency of estimators in the zone of moderate deviation probabilities, Electron. J. Stat., 6, 2150-2184 (2012) · Zbl 1295.62019
[11] Gao, F.; Zhao, X., Delta method in large deviations and moderate deviations for estimators, Ann. Statist., 39, 1211-1240 (2011) · Zbl 1216.62027
[12] Guillin, A.; Liptser, R., Examples of moderate deviation principle for diffusion processes, Discrete Contin. Dyn. Syst. Ser. B, 6, 803-828 (2006) · Zbl 1138.60029
[13] Ikeda, N.; Watanabe, S., Stochastic Differential Equations and Diffusion Processes (1981), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam · Zbl 0495.60005
[14] Inglot, T.; Kallenberg, W., Moderate deviations of minimum contrast estimators under contamination, Ann. Statist., 31, 852-879 (2003) · Zbl 1028.62012
[15] Kallenberg, W., On moderate deviation theory in estimation, Ann. Statist., 11, 498-504 (1983) · Zbl 0515.62027
[16] Kallianpur, G.; Xiong, J., Large deviation principle for a class of stochastic partial differential equations, Ann. Probab., 24, 320-345 (1996) · Zbl 0854.60026
[17] Ledoux, M., Sur les deviations modérées des sommes de variables aléatoires vectorielles independantes de même loi, Ann. Henri Poincaré, 28, 267-280 (1992) · Zbl 0751.60009
[18] Röckner, M.; Zhang, T., Stochastic evolution equations of jump type: existence, uniqueness and large deviation principles, Potential Anal., 26, 255-279 (2007) · Zbl 1119.60057
[19] Sowers, R., Large deviations for a reaction-diffusion equation with non-Gaussian perturbations, Ann. Probab., 20, 504-537 (1992) · Zbl 0749.60059
[20] Sritharan, S.; Sundar, P., Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise, Stochastic Process. Appl., 116, 1636-1659 (2006) · Zbl 1117.60064
[21] Temam, R., Navier-Stokes Equations Theory and Numerical Analysis (1979), North-Holland Pub. Company · Zbl 0426.35003
[22] Wang, R.; Zhai, J. L.; Zhang, T., A moderate deviation principle for 2-D stochastic Navier-Stokes equations, J. Differential Equations, 258, 3363-3390 (2015) · Zbl 1310.60100
[23] Wang, R.; Zhang, T., Moderate deviations for stochastic reaction-diffusion equations with multiplicative noise, Potential Anal., 42, 1, 99-113 (2015) · Zbl 1306.60095
[24] Wu, L., Moderate deviations of dependent random variables related to CLT, Ann. Probab., 23, 420-445 (1995) · Zbl 0828.60017
[25] Xu, T.; Zhang, T., Large deviation principles for 2-D stochastic Navier-Stokes equations driven by Lévy processes, J. Funct. Anal., 257, 1519-1545 (2009) · Zbl 1210.60071
[26] Zhai, J. L.; Zhang, T., Large deviations for 2-D stochastic Navier-Stokes equations with multiplicative Lévy noises, Bernoulli, 21, 2351-2392 (2015) · Zbl 1344.60030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.