×

A new multi-agent system to simulate the foraging behaviors of Physarum. (English) Zbl 1415.68263

Summary: Physarum polycephalum is a unicellular and multi-headed slime mold, which can form high efficient networks connecting spatially separated food sources in the process of foraging. Such adaptive networks exhibit a unique characteristic in which network length and fault tolerance are appropriately balanced. Based on the biological observations, the foraging process of Physarum demonstrates two self-organized behaviors, i.e., search and contraction. In this paper, these two behaviors are captured in a multi-agent system. Two types of agents and three transition rules are designed to imitate the search and the contraction behaviors of Physarum based on the necessary and the sufficient conditions of a self-organized computational system. Some simulations of foraging process are used to investigate the characteristics of our system. Experimental results show that our system can autonomously search for food sources and then converge to a stable solution, which replicates the foraging process of Physarum. Specially, a case study of maze problem is used to estimate the path-finding ability of the foraging behaviors of Physarum. What’s more, the model inspired by the foraging behaviors of Physarum is proposed to optimize meta-heuristic algorithms for solving optimization problems. Through comparing the optimized algorithms and the corresponding traditional algorithms, we have found that the optimization strategies have a higher computational performance than their corresponding traditional algorithms, which further justifies that the foraging behaviors of Physarum have a higher computational ability.

MSC:

68U20 Simulation (MSC2010)
68Q05 Models of computation (Turing machines, etc.) (MSC2010)
68T42 Agent technology and artificial intelligence
92D25 Population dynamics (general)
92D40 Ecology
Full Text: DOI

References:

[1] Adamatzky A (2007) Physarum machines: encapsulating reaction diffusion to compute spanning tree. Naturwissenschaften 94(12):975-980 · doi:10.1007/s00114-007-0276-5
[2] Adamatzky A (2009a) From reaction-diffusion to Physarum computing. Nat Comput 8(3):431-447 · Zbl 1192.68270 · doi:10.1007/s11047-009-9120-5
[3] Adamatzky A (2009b) If BZ medium did spanning trees these would be the same trees as Physarum built. Phys Lett A 373(10):952-956 · Zbl 1228.92017 · doi:10.1016/j.physleta.2008.12.070
[4] Adamatzky A (2012a) Slime mold solves maze in one pass, assisted by gradient of chemo-attractants. IEEE Trans NanoBioscience 11(2):131-134 · doi:10.1109/TNB.2011.2181978
[5] Adamatzky A (2012b) Bioevaluation of world transport networks. World Scientific Publishing Company, Singapore · doi:10.1142/8482
[6] Adamatzky A (2012c) Manipulating substances with Physarum polycephalum. Mater Sci Eng C 30(8):1211-1220 · doi:10.1016/j.msec.2010.06.020
[7] Adamatzky A, Schubert T (2014) Slime mold microfluidic logical gates. Mater Today 17(2):86-91 · doi:10.1016/j.mattod.2014.01.018
[8] Alim K, Amselem G, Peaudecerf F, Brenner MP, Pringle A (2013) Random network peristalsis in Physarum polycephalum organizes fluid flows across an individual. Proc Natl Acad Sci USA 110(33):13306-13311 · doi:10.1073/pnas.1305049110
[9] Aono M, Hara M (2008) Spontaneous deadlock breaking on amoeba-based neurocomputer. Biosystems 91(1):83-93 · doi:10.1016/j.biosystems.2007.08.004
[10] Aono M, Hirata Y, Hara M, Aihara K (2009) Resource-competing oscillator network as a model of amoeba-based neurocomputer. In: The eighth International conference on unconventional computation (UC), LNCS 5715, pp 56-69 · Zbl 1253.68122
[11] Aono M, Hara M, Aihara K, Munakata T (2010a) Amoeba-based emergent computing: combinatorial optimization and autonomous meta-problem solving. Int J Unconvent Comput 6(2):89-108
[12] Aono M, Hirata Y, Hara M, Aihara K (2010b) A model of amoeba-based neurocomputer. J Comput Chem Jpn 9(3):143-156 · Zbl 1253.68122 · doi:10.2477/jccj.H2119
[13] Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant colonies. In: Proceedings of the first European conference on artificial life (ECAL), pp 134-142
[14] Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53-66 · doi:10.1109/4235.585892
[15] Gao C, Liu JM, Zhong N (2011) Network immunization with distributed autonomy-oriented entities. IEEE Trans Parallel Distrib Syst 22(7):1222-1229 · doi:10.1109/TPDS.2010.197
[16] Gao C, Yan C, Zhang ZL, Hu Y, Mahadevan S, Deng Y (2014) An amoeboid algorithm for solving linear transportation problem. Phys A 398:179-186 · Zbl 1395.90182 · doi:10.1016/j.physa.2013.12.023
[17] García-Martínez C, Cordón O, Herrera F (2007) A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. Eur J Oper Res 180(1):116-148 · Zbl 1114.90103 · doi:10.1016/j.ejor.2006.03.041
[18] Gunji YP, Shirakawa T, Niizato T, Haruna T (2008) Minimal model of a cell connecting amoebic motion and adaptive transport networks. J Theor Biol 253(4):659-667 · Zbl 1398.92034 · doi:10.1016/j.jtbi.2008.04.017
[19] Gunji YP, Shirakawa T, Niizato T, Yamachiyo M, Tani I (2011) An adaptive and robust biological network based on the vacant-particle transportation model. J Theor Biol 272(1):187-200 · Zbl 1405.92104 · doi:10.1016/j.jtbi.2010.12.013
[20] Hwang RH, Do WY, Yang SC (2000) Multicast routing based on genetic algorithms. J Inf Sci Eng 16(6):885-901
[21] Jones J (2010a) The emergence and dynamical evolution of complex transport networks from simple low-level behaviours. Int J Unconv Comput 6(2):125-144
[22] Jones J (2010b) Characteristics of pattern formation and evolution in approximations of Physarum transport networks. Artif Life 16(2):127-153 · doi:10.1162/artl.2010.16.2.16202
[23] Jones J (2011) Influences on the formation and evolution of Physarum polycephalum inspired emergent transport networks. Nat Comput 10(4):1345-1369 · doi:10.1007/s11047-010-9223-z
[24] Karthikeyan P, Baskar S (2015) Genetic algorithm with ensemble of immigrant strategies for multicast routing in Ad hoc networks. Soft Comput 19(2):489-498 · doi:10.1007/s00500-014-1269-x
[25] Liang MX, Gao C, Liu YX, Tao L, Zhang ZL (2015) A new Physarum network based genetic algorithm for bandwidth-delay constrained least-cost multicast routing. In: Proceedings of the sixth international conference on swarm intelligence (ICSI), LNCS 9141, pp 273-280
[26] Liu JM (2008) Autonomy-oriented computing (AOC): The nature and implications of a paradigm for self-organized computing. In: Proceedings of the fourth internation conference on natural computation (ICNC) and fifth international conference on Fuzzy systems and knowledge discovery (FSKD), pp 3-11
[27] Liu JM, Jin XL, Tsui KC (2006) Autonomy oriented computing (AOC): from problem solving to complex systems modeling. Kluwer, Dordrecht · Zbl 1069.68084
[28] Liu YX, Zhang ZL, Gao C, Wu YH, Qian T (2013) A Physarum network evolution model based on IBTM. In: Proceedings of the Fourth international conference on swarm intelligence (ICSI), LNCS 7929, pp 19-26
[29] Liu YX, Lu YX, Gao C, Zhang ZL, Tao L (2014) A multi-objective ant colony optimization algorithm based on the Physarum-inspired mathematical model. In: Proceedings tenth international conference on natural computation (ICNC) and eleventh international conference on Fuzzy systems and knowledge discovery (FSKD), pp 304-309
[30] Liu YX, Gao C, Zhang ZL, Lu YX, Chen S, Liang MX, Tao L (2015) Solving NP-hard problems with Physarum-based ant colony system. In: IEEE/ACM Transactions on Computational Biology and Bioinformatics. doi:10.1109/TCBB.2015.2462349
[31] Lu T, Zhu J (2013) Genetic algorithm for energy-efficient QoS multicast routing. IEEE Commun Lett 17(1):31-34 · doi:10.1109/LCOMM.2012.112012.121467
[32] Masi, L.; Vasile, M.; Schuetze, O. (ed.); etal., A multi-directional modified Physarum algorithm for optimal multi-objective discrete decision making, 195-212 (2014), Berlin · doi:10.1007/978-3-319-01460-9_9
[33] Ma L, Wang LD (2001) Ant optimization algorithm for knapsack problem. J Comput Appl 21(8):4-5
[34] Nakagaki T, Yamada H, Tóth Á (2000) Maze-solving by an amoeboid organism. Nature 407(6803):470 · doi:10.1038/35035159
[35] Nakagaki T, Yamada H, Toth A (2001) Path finding by tube morphogenesis in an amoeboid organism. Biophys Chem 92(1-2):47-52 · doi:10.1016/S0301-4622(01)00179-X
[36] Pershin YV, Ventra MD (2011) Solving mazes with memristors: a massively parallel approach. Phys Rev E 84:046703 · doi:10.1103/PhysRevE.84.046703
[37] Qian T, Zhang ZL, Gao C, Wu YH, Liu YX (2013) An ant colony system based on the Physarum network. In: Proceedings of the fourth internation conference on swarm intelligence(ICSI), LNCS 7928, pp 297-305
[38] Reid CR, Beekman M (2013) Solving the towers of Hanoi-how an amoeboid organism efficiently constructs transport networks. J Exp Biol 216(9):1546-1551 · doi:10.1242/jeb.081158
[39] Saenphon T, Phimoltares S, Lursinsap C (2014) Combining new fast opposite gradient search with ant colony optimization for solving travelling salesman problem. Eng Appl Artif Intell 35:324-334 · doi:10.1016/j.engappai.2014.06.026
[40] Salama HF (1996) Multicast routing for real-time communication of high-speed networks. Ph.D. Thesis, North Carolina State University
[41] Shi BY, Liu JM (2012) A decentralized mechanism for improving the functional robustness of distribution networks. IEEE Trans Syst Man Cybern B Cybern 42(5):1369-1382 · doi:10.1109/TSMCB.2012.2191774
[42] Stützle T, Hoos HH (2000) MAX-MIN ant system. Future Gener Comput Syst 16(8):889-914 · Zbl 0970.90083 · doi:10.1016/S0167-739X(00)00043-1
[43] Tero A, Kobaysahi R, Nakagaki T (2006) Physarum solver: a biologically inspired method of road-network navigation. Phys A 363(1):115-119 · doi:10.1016/j.physa.2006.01.053
[44] Tero A, Kobayashi R, Nakagaki T (2007) A mathematical model for adaptive transport network in path finding by true slime mold. J Theor Biol 244(4):553-564 · Zbl 1450.92052 · doi:10.1016/j.jtbi.2006.07.015
[45] Tero A, Takagi S, Saigusa T, Ito K, Bebber DP, Fricker MD, Yumiki K, Kobayashi R, Nakagaki T (2010) Rules for biologically inspired adaptive network design. Science 327(5964):439-442 · Zbl 1226.90021 · doi:10.1126/science.1177894
[46] Tsompanas M, Sirakoulis G (2012) Modeling and hardware implementation of an amoeba-like cellular automaton. Bioinspir Biomim 7(3):036013 · doi:10.1088/1748-3182/7/3/036013
[47] Wang Q, Zhang ZL, Zhang YJ, Deng Y (2012) Fuzzy shortest path problem based on biological method. J Inf Comput Sci 9(5):1365-1371
[48] Wu YH, Zhang ZL, Deng Y, Zhou H, Qian T (2012) An enhanced multi-agent system with evolution mechanism to approximate Physarum transport networks. In: Proceedings of the twenty-fifth anniversary of the Australasian joint conference on artificial intelligence (AI), LNCS 7691, pp 27-38
[49] Wu YH, Zhang ZL, Deng Y, Zhou H, Qian T (2015) A new model to imitate the foraging behavior of Physarum polycephalum on a nutrient-poor substrate. Neurocomputing 148(19):63-69 · doi:10.1016/j.neucom.2012.10.044
[50] Yu ZW, Wong H-S, Wang DW, Wei M (2011) Neighborhood knowledge-based evolutionary algorithm for multiobjective optimization problems. IEEE Trans Evol Comput 15(6):812-831 · doi:10.1109/TEVC.2010.2051444
[51] Yu ZW, Chen HT, You J, Wong H-S, Liu JM, Han GQ, Li L (2015) Adaptive fuzzy consensus clustering framework for clustering analysis of cancer data. IEEE/ACM Trans Comput Biol Bioinf 12(3):568-582 · doi:10.1109/TCBB.2014.2368981
[52] Zeitoun AH, Ibrahim SS, Bagowski CP (2012) Identifying the common interaction networks of amoeboid motility and cancer cell metastasis. Network Biol 2(2):45-56
[53] Zhang YJ, Zhang ZL, Deng Y, Mahadevan S (2013a) A biologically inspired solution for Fuzzy shortest path problems. Appl Soft Comput 13(5):2356-2363 · doi:10.1016/j.asoc.2012.12.035
[54] Zhang XG, Huang SY, Hu Y, Zhang YJ, Mahadevan S, Deng Y (2013b) Solving 0-1 knapsack problems based on amoeboid organism algorithm. Appl Math Comput 219(19):9959-9970 · Zbl 1290.90065
[55] Zhang XG, Wang Q, Adamatzky A, Chan FTS, Mahadevan S, Deng Y (2014a) A biologically inspired optimization algorithm for solving Fuzzy shortest path problems with mixed Fuzzy arc lengths. J Optim Theory Appl 163(3):1049-1056 · Zbl 1305.65157 · doi:10.1007/s10957-014-0542-6
[56] Zhang ZL, Gao C, Liu YX, Qian T (2014b) A universal optimization strategy for ant colony optimization algorithms based on the Physarum-inspired mathematical model. Bioinspir Biomim 9:036006 · doi:10.1088/1748-3182/9/3/036006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.