×

Design and analysis of robust nonlinear neural dynamics for solving dynamic nonlinear equation within finite time. (English) Zbl 1468.93132

Summary: Dynamic nonlinear equation is a kind of important nonlinear systems, and many practical problems can be formulated as a dynamic nonlinear equation in mathematics to be solved. Inspired by the negative impact of additive noises on zeroing neural dynamics (ZND) for dynamic nonlinear equation, a robust nonlinear neural dynamics (RNND) is designed and presented to achieve noise suppression and finite-time convergence simultaneously. Compared to the existing ZND model only with finite-time convergence, the proposed RNND model inherently possesses the extra robustness property in front of additive noises, in addition to finite-time convergence. Furthermore, design process, theoretical analysis, and numerical verification of the proposed RNND model are supplied in details. Both theoretical and numerical results validate the better property of the proposed RNND model for solving such a nonlinear equation in the presence of external disturbances, as compared to the ZND model.

MSC:

93D09 Robust stability
62M45 Neural nets and related approaches to inference from stochastic processes
Full Text: DOI

References:

[1] Xiao, L., Zhang, Y.: Solving time-varying inverse kinematics problem of wheeled mobile manipulators using Zhang neural network with exponential convergence. Nonlinear Dyn. 76, 1543-1559 (2014) · doi:10.1007/s11071-013-1227-7
[2] Tlelo-Cuautle, E., Carbajal-Gomez, V.H., Obeso-Rodelo, P.J., et al.: FPGA realization of a chaotic communication system applied to image processing. Nonlinear Dyn. 82, 1879-1892 (2015) · Zbl 1441.94006 · doi:10.1007/s11071-015-2284-x
[3] Li, S., Zhang, Y., Jin, L.: Kinematic control of redundant manipulators using neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28, 2243-2254 (2017) · doi:10.1109/TNNLS.2016.2574363
[4] Narayanan, M.D., Narayanan, S., Padmanabhan, C.: Parametric identification of nonlinear systems using multiple trials. Nonlinear Dyn. 48, 341-360 (2007) · Zbl 1177.93031 · doi:10.1007/s11071-006-9085-1
[5] Peng, J., Wang, J., Wang, W.: Neural network based robust hybrid control for robotic system: an \[H-\infty \]∞ approach. Nonlinear Dyn. 65, 421-431 (2011) · Zbl 1280.93058 · doi:10.1007/s11071-010-9902-4
[6] Jin, L., Zhang, Y.: Discrete-time Zhang neural network for online time-varying nonlinear optimization with application to manipulator motion generation. IEEE Trans. Neural Netw. Learn. Syst. 26, 1525-1531 (2015) · doi:10.1109/TNNLS.2014.2342260
[7] Li, S., Wang, H., Rafique, M.U.: A novel recurrent neural network for manipulator control with improved noise tolerance. IEEE Trans. Neural Netw. Learn. Syst. 29, 1908-1918 (2018) · doi:10.1109/TNNLS.2017.2672989
[8] Xiao, L., Zhang, Y.: A new performance index for the repetitive motion of mobile manipulators. IEEE Trans. Cybern. 44, 280-292 (2014) · doi:10.1109/TCYB.2013.2253461
[9] Li, S., He, J., Li, Y., Rafique, M.U.: Distributed recurrent neural networks for cooperative control of manipulators: a game-theoretic perspective. IEEE Trans. Neural Netw. Learn. Syst. 28, 415-426 (2017) · doi:10.1109/TNNLS.2016.2516565
[10] Chun, C.: Construction of Newton-like iteration methods for solving nonlinear equations. Numer. Math. 104, 297-315 (2006) · Zbl 1126.65042 · doi:10.1007/s00211-006-0025-2
[11] Abbasbandy, S.: Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method. Appl. Math. Comput. 145, 887-893 (2003) · Zbl 1032.65048
[12] Sharma, J.R.: A composite third order Newton-Steffensen method for solving nonlinear equations. App. Math. Comput. 169, 242-246 (2005) · Zbl 1084.65054 · doi:10.1016/j.amc.2004.10.040
[13] Ujevic, N.: A method for solving nonlinear equations. App. Math. Comput. 174, 1416-1426 (2006) · Zbl 1090.65056 · doi:10.1016/j.amc.2005.05.036
[14] Wang, J., Chen, L., Guo, Q.: Iterative solution of the dynamic responses of locally nonlinear structures with drift. Nonlinear Dyn. 88, 1551-1564 (2017) · doi:10.1007/s11071-017-3328-1
[15] Zhang, Y., Chen, D., Guo, D., Liao, B., Wang, Y.: On exponential convergence of nonlinear gradient dynamics system with application to square root finding. Nonlinear Dyn. 79, 983-1003 (2015) · Zbl 1345.65066 · doi:10.1007/s11071-014-1716-3
[16] Xiao, L.: A nonlinearly-activated neurodynamic model and its finite-time solution to equality-constrained quadratic optimization with nonstationary coefficients. Appl. Soft Comput. 40, 252-259 (2016) · doi:10.1016/j.asoc.2015.11.023
[17] Zhang, Y., Xiao, L., Xiao, Z., Mao, M.: Zeroing Dynamics, Gradient Dynamics, and Newton Iterations. CRC Press, Boca Raton (2015) · Zbl 1366.37003 · doi:10.1201/b19216
[18] Xiao, L.: Accelerating a recurrent neural network to finite-time convergence using a new design formula and its application to time-varying matrix square root. J. Frank. Inst. 354, 5667-5677 (2017) · Zbl 1395.93353 · doi:10.1016/j.jfranklin.2017.06.012
[19] Xiao, L., Zhang, Y.: Zhang neural network versus gradient neural network for solving time-varying linear inequalities. IEEE Trans. Neural Netw. 22, 1676-1684 (2011) · doi:10.1109/TNN.2011.2163318
[20] Xiao, L., Zhang, Y.: Two new types of Zhang neural networks solving systems of time-varying nonlinear inequalities. IEEE Trans. Circuits Syst. I(59), 2363-2373 (2012) · Zbl 1468.65076 · doi:10.1109/TCSI.2012.2188944
[21] Zhang, Y., Xu, P., Tan, N.: Further studies on Zhang neural-dynamics and gradient dynamics for online nonlinear equations Solving. In: Proceedings of the IEEE International Conference on Automation and Logistics, pp. 566-571 (2009)
[22] Zhang, Y., Xu, P., Tan, N.: Solution of nonlinear equations by continuous-and discrete-time Zhang dynamics and more importantly their links to Newton iteration. In: Proceedings of the IEEE International Conference on Information, Communications and Signal Processing, pp. 1-5 (2009)
[23] Zhang, Y., Yi, C., Guo, D., Zheng, J.: Comparison on Zhang neural dynamics and gradient-based neural dynamics for online solution of nonlinear time-varying equation. Neural Comput. Appl. 20, 1-7 (2011) · doi:10.1007/s00521-010-0452-y
[24] Zhang, Y., Li, Z., Guo, D., Ke, Z., Chen, P.: Discrete-time ZD, GD and NI for solving nonlinear time-varying equations. Numer. Algorithms 64, 721-740 (2013) · Zbl 1296.65075 · doi:10.1007/s11075-012-9690-7
[25] Li, S., Chen, S., Liu, B.: Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function. Neural Process. Lett. 37, 189-205 (2013) · doi:10.1007/s11063-012-9241-1
[26] Xiao, L., Lu, R.: Finite-time solution to nonlinear equation using recurrent neural dynamics with a specially-constructed activation function. Neurocomputing 151, 246-251 (2015) · doi:10.1016/j.neucom.2014.09.047
[27] Xiao, L.: A nonlinearly activated neural dynamics and its finite-time solution to time-varying nonlinear equation. Neurocomputing 173, 1983-1988 (2016) · doi:10.1016/j.neucom.2015.08.031
[28] Xiao, L.: A finite-time recurrent neural network for solving online time-varying Sylvester matrix equation based on a new evolution formula. Nonlinear Dyn. 90, 1581-1591 (2017) · Zbl 1380.34047 · doi:10.1007/s11071-017-3750-4
[29] Li, S., Li, Y., Wang, Z.: A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application. Neural Netw. 39, 27-39 (2013) · Zbl 1338.90291 · doi:10.1016/j.neunet.2012.12.009
[30] Xiao, L., Liao, B., Li, S., Chen, K.: Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations. Neural Netw. 98, 102-113 (2018) · Zbl 1441.93265 · doi:10.1016/j.neunet.2017.11.011
[31] Xiao, L., Liao, B., Li, S., Zhang, Z., Ding, L., Jin, L.: Design and analysis of FTZNN applied to real-time solution of nonstationary Lyapunov equation and tracking control of wheeled mobile manipulator. IEEE Trans. Ind. Inf. 14, 98-105 (2018) · doi:10.1109/TII.2017.2717020
[32] Zhang, Y., Qiu, B., Liao, B., Yang, Z.: Control of pendulum tracking (including swinging up) of IPC system using zeroing-gradient method. Nonlinear Dyn. 89, 1-25 (2017) · Zbl 1374.93314 · doi:10.1007/s11071-017-3432-2
[33] Zhang, Y., Yan, X., Chen, D., Guo, D., Li, W.: QP-based refined manipulability-maximizing scheme for coordinated motion planning and control of physically constrained wheeled mobile redundant manipulators. Nonlinear Dyn. 85, 245-261 (2016) · doi:10.1007/s11071-016-2681-9
[34] Zhang, Y., Li, S., Guo, H.: A type of biased consensus-based distributed neural network for path plannings. Nonlinear Dyn. 89, 1803-1815 (2017) · Zbl 1375.34044 · doi:10.1007/s11071-017-3553-7
[35] Xiao, L., Li, S., Yang, J., Zhang, Z.: A new recurrent neural network with noise-tolerance and finite-time convergence for dynamic quadratic minimization. Neurocomputing 285, 125-132 (2018) · doi:10.1016/j.neucom.2018.01.033
[36] Xiao, L., Zhang, Z., Zhang, Z., Li, W., Li, S.: Design, verification and robotic application of a novel recurrent neural network for computing dynamic Sylvester equation. Neural Netw. 105, 185-196 (2018) · Zbl 1470.68044 · doi:10.1016/j.neunet.2018.05.008
[37] LaSalle, J.P.: Stability theory for ordinary differential equations. J. Differ. Equ. 4, 57-65 (1968) · Zbl 0159.12002 · doi:10.1016/0022-0396(68)90048-X
[38] Chellaboina, V., Bhat, S.P., Haddad, W.M.: An invariance principle for nonlinear hybrid and impulsive dynamical systems. Non. Anal. Theory Methods Appl. 53, 527-550 (2003) · Zbl 1082.37018 · doi:10.1016/S0362-546X(02)00316-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.