×

A constrained multi-period robust portfolio model with behavioral factors and an interval semi-absolute deviation. (English) Zbl 1435.91172

Summary: In this paper, a multi-period portfolio selection model is presented considering the behavioral factors of investors. The behavioral factors are presented in the form of prospect theory with three main parameters as reference dependence, risk aversion, and diminishing sensitivity; these parameters define the behavioral features of investors that can influence their investing. The future return of assets is regarded according to the interval based on uncertainty. Besides, a criterion of interval semi-absolute deviation is presented to control the risk of investing. The influence of uncertainty exists in the optimal parameters; the final result is controlled by a robust optimization approach. In order to make this model applicable and adapting it to the conditions of the real world, we considered the cardinality constraints, entropy and the possibility of risk-free borrowing and lending with different rates. First, the model is solved by GAMS in small size to check the feasibility, then, due to the NP-hard feature of the model, we used three meta-heuristic algorithms, which are more appropriate for solving large problems, to solve the proposed model. To survey the model’s performance, we used real data from a case study. The results show that the model reflects the behavioral factors of investors in their portfolio and it also maintains the robustness level in accordance with the degree of conservatism. Besides, the sensitivity analysis is performed to show the model’s efficiency. Finally, we compared the results of different meta-heuristic algorithms and benchmark model’s performance.

MSC:

91G10 Portfolio theory
90C11 Mixed integer programming
90C30 Nonlinear programming

Software:

GWO
Full Text: DOI

References:

[1] Markowitz, H., Portfolio selection, J. Financ., 7, 1, 77-91 (1952)
[2] Sharpe, W., A simplified model for portfolio analysis, Manage. Sci., 9, 2, 277-293 (1963)
[3] Ross, S., Mutual fund separation in financial theory—The separating distributions, J. Econ. Theory, 17, 2, 254-286 (1978) · Zbl 0379.90010
[4] Maringer, D.; Kellerer, H., Optimization of cardinality constrained portfolios with a hybrid local search algorithm, OR Spectrum, 25, 4, 481-495 (2003) · Zbl 1031.91054
[5] Woodside-Oriakhi, M.; Lucas, C.; Beasley, J. E., Heuristic algorithms for the cardinality constrained efficient frontier, European J. Oper. Res., 213, 3, 538-550 (2011) · Zbl 1218.91151
[6] Beale, E.; Forrest, J., Global optimization using special ordered sets, Math. Program., 10, 1, 52-69 (1976) · Zbl 0331.90056
[7] Mansini, R.; Ogryczak, W.; Speranza, M., Twenty years of linear programming based portfolio optimization, European J. Oper. Res., 234, 2, 518-535 (2014) · Zbl 1304.91202
[8] Shannon, C., The Mathematical Theory of Communication (1949), The University of Illinois Press: The University of Illinois Press Urbana, IL · Zbl 0041.25804
[9] Lai, T., Portfolio selection with skewness: a multiple-objective approach, Rev. Quant. Financ. Account., 1, 3 (1991)
[10] Konno, H.; Yamazaki, H., Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Manage. Sci., 37, 5, 519-531 (1991)
[11] Simaan, Y., Estimation risk in portfolio selection: the mean variance model versus the mean absolute deviation model, Manage. Sci., 43, 10, 1437-1446 (1997)
[12] Speranza, M. G., Linear programming models for portfolio optimization (1993)
[13] Vercher J. D. Bermúdez, E.; Segura, J. V., Fuzzy portfolio optimization under downside risk measures, Fuzzy Sets Syst., 158, 7, 769-782 (2007) · Zbl 1190.91140
[14] Liu, Y.; Qin, Z., Mean semi-absolute deviation model for uncertain portfolio optimization problem, J. Uncertain Syst., 6, 4, 299-307 (2012)
[15] Qin, Z.; Kar, S.; Zheng, H., Uncertain portfolio adjusting model using semiabsolute deviation, Soft. Comput., 20, 2, 717-725 (2016) · Zbl 1371.91164
[16] Pınar, M.Ç.; Paç, A. B., Mean semi-deviation from a target and robust portfolio choice under distribution and mean return ambiguity, J. Comput. Appl. Math., 259, 394-405 (2014) · Zbl 1314.91199
[17] Vercher, E.; Bermúdez, J. D., Portfolio optimization using a credibility mean-absolute semi-deviation model, Expert Syst., 42, 20, 7121-7131 (2015)
[18] Chen, L.; Peng, J.; Zhang, B.; Rosyida, I., Diversified models for portfolio selection based on uncertain semivariance, Internat. J. Systems Sci., 48, 3, 637-648 (2017) · Zbl 1411.91491
[19] Xue, L.; Di, H.; Zhao, X.; Zhang, Z., Uncertain portfolio selection with mental accounts and realistic constraints, J. Comput. Appl. Math., 346, 42-52 (2019) · Zbl 1417.91487
[20] Mossion, E., Dupont De Nemours Et LA Question De LA Compagnie De Indes, 200 (1968), Ayer Publishing
[21] Hakansson, N. H., Multi-period mean-variance analysis: Toward a general theory of portfolio choice, J. Financ., 26, 4, 857-884 (1971)
[22] Li, D.; Chan, T. F.; Ng, W. L., Safety-first dynamic portfolio selection, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 4, 4, 585-600 (1998) · Zbl 0916.90023
[23] Sadjadi, S. J.; Seyedhosseini, S. M.; Hassanlou, K., Fuzzy multi period portfolio selection with different rates for borrowing and lending, Appl. Soft Comput., 11, 4, 3821-3826 (2011)
[24] Calafiore, G. C., Multi-period portfolio optimization with linear control policies, Automatica, 44, 10, 2463-2473 (2008) · Zbl 1157.91354
[25] Liu, Y. J.; Zhang, W. G., A multi-period fuzzy portfolio optimization model with minimum transaction lots, European J. Oper. Res., 242, 3, 933-941 (2015) · Zbl 1341.90151
[26] Liu, Y. J.; Zhang, W. G.; Xu, W. J., Fuzzy multi-period portfolio selection optimization models using multiple criteria, Automatica, 48, 12, 3042-3053 (2012) · Zbl 1255.93152
[27] Liu, Y. J.; Zhang, W. G.; Zhang, P., A multi-period portfolio selection optimization model by using interval analysis, Econ. Model., 33, 113-119 (2013)
[28] Zhang, P., An interval mean-average absolute deviation model for multiperiod portfolio selection with risk control and cardinality constraints, Soft Comput., 20, 3, 1203-1212 (2016)
[29] Qi, J.; Yi, L., Multi-period portfolio selection with no-shorting constraints: Duality analysis, J. Math. Financ., 7, 03, 751 (2017)
[30] Wang, S.; Zhu, S., On fuzzy portfolio selection problems, Fuzzy Optim. Decis. Mak., 1, 4, 361-377 (2002) · Zbl 1091.91513
[31] Lai, K. K.; Wang, S. Y.; Xu, J. P.; Zhu, S. S.; Fang, Y., A class of linear interval programming problems and its application to portfolio selection, IEEE Trans. Fuzzy Syst., 10, 6, 698-704 (2002)
[32] Giove, S.; Funari, S.; Nardelli, C., An interval portfolio selection problem based on regret function, European J. Oper. Res., 170, 1, 253-264 (2009) · Zbl 1079.91030
[33] Soyster, A. L., Convex programming with set-inclusive constraints and applications to inexact linear programming, Oper. Res., 21, 5, 1154-1157 (1973) · Zbl 0266.90046
[34] Soyster, A. L.; Murphy, F. H., Data driven matrix uncertainty for robust linear programming, Omega, 70, 43-57 (2017)
[35] Ben-Tal, A.; Nemirovski, A., Robust solutions of linear programming problems contaminated with uncertain data, Math. Program., 88, 3, 411-424 (2000) · Zbl 0964.90025
[36] Bertsimas, D.; Sim, M., Robust discrete optimization and network flows, Math. Program., 98, 1-3, 49-71 (2003) · Zbl 1082.90067
[37] Bertsimas, D.; Pachamanova, D., Robust multiperiod portfolio management in the presence of transaction costs, Comput. Oper. Res., 35, 1, 3-17 (2008) · Zbl 1139.91333
[38] Moon, Y.; Yao, T., A robust mean absolute deviation model for portfolio optimization, Comput. Oper. Res., 38, 9, 1251-1258 (2011) · Zbl 1208.91137
[39] Chen, C.; Kwon, R. H., Robust portfolio selection for index tracking, Comput. Oper. Res., 39, 4, 829-837 (2012) · Zbl 1251.91053
[40] Ghahtarani, A.; Najafi, A. A., Robust goal programming for multi-objective portfolio selection problem, Econ. Model., 33, 588-592 (2013)
[41] Xidonas, P.; Mavrotas, G.; Hassapis, C.; Zopounidis, C., Robust multiobjective portfolio optimization: A minimax regret approach, European J. Oper. Res., 262, 1, 299-305 (2017) · Zbl 1403.91326
[42] Liu, J.; Chen, Z., Time consistent multi-period robust risk measures and portfolio selection models with regime-switching, European J. Oper. Res. (2018) · Zbl 1403.91316
[43] Yu, J. R.; Chiou, W. J.P.; Liu, R. T., Incorporating transaction costs, weighting management, and floating required return in robust portfolios, Comput. Ind. Eng., 109, 48-58 (2017)
[44] Kahneman, D.; Tversky, A., Prospect theory: An analysis of decision under risk, (Handb. Fundam. Financ. Decis. Ma. Part I (2013)), 99-127
[45] Li, X.; Qin, Z., Interval portfolio selection models within the framework of uncertainty theory, Econ. Model., 41, 338-344 (2014)
[46] Shefrin, H.; Statman, M., Behavioral portfolio theory, J. Financ. Quant. (2000)
[47] Blake, D.; Wright, D.; Zhang, Y., Target-driven investing: Optimal investment strategies in defined contribution pension plans under loss aversion, J. Econ. Dyn. Control, 37, 1, 195-209 (2013) · Zbl 1345.91067
[48] Guo, W., Optimal portfolio choice for an insurer with loss aversion, Insurance Math. Econom., 58, 217-222 (2014) · Zbl 1304.91194
[49] Gong, C.; Xu, C.; Ando, M.; Xi, X., A new method of portfolio optimization under cumulative prospect theory, Tsinghua Sci. Technol., 23, 1, 75-86 (2018)
[50] Hassanzadeh, F.; Nemati, H.; Sun, M., Robust optimization for interactive multiobjective programming with imprecise information applied to R & D project portfolio selection, European J. Oper. Res., 238, 1, 41-53 (2014) · Zbl 1338.90371
[51] Maillet, B.; Tokpavi, S.; Vaucher, B., Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach, European J. Oper. Res., 244, 1, 289-299 (2015) · Zbl 1346.91215
[52] Zhu, S.; Fan, M.; Li, D., Portfolio management with robustness in both prediction and decision: A mixture model based learning approach, J. Econ. Dyn. Control, 48, 1-25 (2014) · Zbl 1402.91744
[53] Liu, J.; Jin, X.; Wang, T.; Yuan, Y., Robust multi-period portfolio model based on prospect theory and ALMV-PSO algorithm, Expert Syst., 42, 20, 7252-7262 (2015)
[54] Bertsimas, D.; Sim, M., The price of robustness, Oper. Res., 52, 1, 35-53 (2004) · Zbl 1165.90565
[55] Alefeld, G.; Herzberger, J., Einführung in die Intervallrechnung (1983), Academic Press · Zbl 0333.65002
[56] Tversky, A.; Kahneman, D., Advances in prospect theory: Cumulative representation of uncertainty, J. Risk Uncertain., 5, 4, 297-323 (1992) · Zbl 0775.90106
[57] Fortin, I.; Hlouskova, J., Optimal asset allocation under linear loss aversion, J. Bank. Financ., 35, 11, 2974-2990 (2011)
[58] Fan, Z. P.; Zhang, X.; Chen, F. D.; Liu, Y., Multiple attribute decision making considering aspiration-levels: A method based on prospect theory, Comput. Ind. Eng., 65, 2, 341-350 (2013)
[59] Holland, J. H., (Adaptation in Natural and Artificial Systems. Adaptation in Natural and Artificial Systems, An Introductory Analysis with Application to Biology, Control, and Artificial Intelligence (1975), University of Michigan Press: University of Michigan Press Ann Arbor, MI), 439-444 · Zbl 0317.68006
[60] Soleimani, H.; Golmakani, H. R.; Salimi, M. H., Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm, Expert Syst., 36, 3, 5058-5063 (2009)
[61] Arora, S.; Singh, S., Butterfly optimization algorithm: a novel approach for global optimization, Soft Comput., 23, 3, 715-734 (2019)
[62] Mirjalili, S.; Mirjalili, S. M.; Lewis, A., Grey wolf optimizer, Adv. Eng. Softw., 69, 46-61 (2014)
[63] Bhattacharyya, R.; Kar, S.; Majumder, D. D., Fuzzy mean-variance-skewness portfolio selection models by interval analysis, Comput. Math. Appl., 61, 1, 126-137 (2011) · Zbl 1207.91059
[64] Righi, M. B.; Borenstein, D., A simulation comparison of risk measures for portfolio optimization, Financ. Res. Lett., 24, 105-112 (2018)
[65] Bacon, C. R., Practical Portfolio Performance Measurement and Attribution, with CD-ROM (2008), John Wiley & Sons
[66] Goel, A.; Sharma, A., Deviation measure in second-order stochastic dominance withan application to enhanced indexing, Int. Trans. Oper. Res., 00, 1-30 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.