×

An observation-driven time-dependent basis for a reduced description of transient stochastic systems. (English) Zbl 1472.60004

Summary: We present a variational principle for the extraction of a time-dependent orthonormal basis from random realizations of transient systems. The optimality condition of the variational principle leads to a closed-form evolution equation for the orthonormal basis and its coefficients. The extracted modes are associated with the most transient subspace of the system, and they provide a reduced description of the transient dynamics that may be used for reduced-order modelling, filtering and prediction. The presented method is matrix free; it relies only on the observables of the system and ignores any information about the underlying system. In that sense, the presented reduction is purely observation driven and may be applied to systems whose models are not known. The presented method has linear computational complexity and memory storage requirement with respect to the number of observables and the number of random realizations. Therefore, it may be used for a large number of observations and samples. The effectiveness of the proposed method is tested on four examples: (i) stochastic advection equation, (ii) stochastic Burgers equation, (iii) a reduced description of transient instability of Kuramoto-Sivashinsky, and (iv) a transient vertical jet governed by the incompressible Navier-Stokes equation. In these examples, we contrast the performance of the time-dependent basis versus static basis such as proper orthogonal decomposition, dynamic mode decomposition and polynomial chaos expansion.

MSC:

60-08 Computational methods for problems pertaining to probability theory
37H10 Generation, random and stochastic difference and differential equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)

References:

[1] Hey T, Tansley S, Tolle K. 2009 The fourth paradigm: data-intensive scientific discovery. Redmond, WA: Microsoft Research.
[2] van der Maaten LJP, Postma EO, van den Herik HJ. 2009 Dimensionality reduction: a comparative review. See https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_Reduction_Review_2009.pdf.
[3] Noack BR. 2016 From snapshots to modal expansions—bridging low residuals and pure frequencies. J. Fluid Mech. 802, 1-4. (doi:10.1017/jfm.2016.416) · Zbl 1462.76094 · doi:10.1017/jfm.2016.416
[4] Marzouk Y, Xiu D. 2009 A stochastic collocation approach to Bayesian inference in inverse problems. Commun. Comput. Phys. 6, 826-847. (doi:10.4208/cicp.2009.v6.p826) · Zbl 1364.62064 · doi:10.4208/cicp.2009.v6.p826
[5] Xiu D, Karniadakis GE. 2002 The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619-644. (doi:10.1137/S1064827501387826) · Zbl 1014.65004 · doi:10.1137/S1064827501387826
[6] Branicki M, Majda AJ. 2012 Fundamental limitations of polynomial chaos for uncertainty quantification in systems with intermittent instabilities. Commun. Math. Sci. 11, 55-103. (doi:10.4310/CMS.2013.v11.n1.a3) · Zbl 1281.60054 · doi:10.4310/CMS.2013.v11.n1.a3
[7] Wan X, Karniadakis GE. 2006 Long-term behavior of polynomial chaos in stochastic flow simulations. Comput. Methods Appl. Mech. Eng. 195, 5582-5596. (doi:10.1016/j.cma.2005.10.016) · Zbl 1123.76058 · doi:10.1016/j.cma.2005.10.016
[8] Schmid PJ. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5-28. (doi:10.1017/S0022112010001217) · Zbl 1197.76091 · doi:10.1017/S0022112010001217
[9] Kutz J, Brunton S, Brunton B, Proctor J. Dynamic mode decomposition: data-driven modeling of complex systems. Philadelphia, PA: Society for Industrial and Applied Mathematics. · Zbl 1365.65009
[10] Crommelin DT, Majda AJ. 2004 Strategies for model reduction: comparing different optimal bases. J. Atmos. Sci. 61, 2206-2217. (doi:10.1175/1520-0469(2004)061<2206:SFMRCD>2.0.CO;2) · doi:10.1175/1520-0469(2004)061<2206:SFMRCD>2.0.CO;2
[11] Sapsis TP, Lermusiaux PFJ. 2009 Dynamically orthogonal field equations for continuous stochastic dynamical systems. Physica D 238, 2347-2360. (doi:10.1016/j.physd.2009.09.017) · Zbl 1180.37119 · doi:10.1016/j.physd.2009.09.017
[12] Cheng M, Hou TY, Zhang Z. 2013 A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations I: derivation and algorithms. J. Comput. Phys. 242, 843-868. (doi:10.1016/j.jcp.2013.02.033) · Zbl 1297.65008 · doi:10.1016/j.jcp.2013.02.033
[13] Choi M, Sapsis TP, Karniadakis GE. 2014 On the equivalence of dynamically orthogonal and bi-orthogonal methods: theory and numerical simulations. J. Comput. Phys. 270, 1-20. (doi:10.1016/j.jcp.2014.03.050) · Zbl 1349.65535 · doi:10.1016/j.jcp.2014.03.050
[14] Babaee H, Choi M, Sapsis TP, Karniadakis GE. 2017 A robust bi-orthogonal/dynamically-orthogonal method using the covariance pseudo-inverse with application to stochastic flow problems. J. Comput. Phys. 344, 303-319. (doi:10.1016/j.jcp.2017.04.057) · Zbl 1380.76093 · doi:10.1016/j.jcp.2017.04.057
[15] Beck MH, Jäckle A, Worth GA, Meyer HD. 2000 The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 324, 1-105. (doi:10.1016/S0370-1573(99)00047-2) · doi:10.1016/S0370-1573(99)00047-2
[16] Bardos C, Golse F, Gottlieb AD, Mauser NJ. 2003 Mean field dynamics of fermions and the time-dependent Hartree-Fock equation. J. Math. Pures Appl. 82, 665-683. (doi:10.1016/S0021-7824(03)00023-0) · Zbl 1029.82022 · doi:10.1016/S0021-7824(03)00023-0
[17] Koch O, Lubich C. 2007 Dynamical low-rank approximation. SIAM J. Matrix Anal. Appl. 29, 434-454. (doi:10.1137/050639703) · Zbl 1145.65031 · doi:10.1137/050639703
[18] Babaee H, Sapsis TP. 2016 A minimization principle for the description of modes associated with finite-time instabilities. Proc. R. Soc. A 472, 20150779. (doi:10.1098/rspa.2015.0779) · Zbl 1371.34064 · doi:10.1098/rspa.2015.0779
[19] Babaee H, Farazmand M, Haller G, Sapsis TP. 2017 Reduced-order description of transient instabilities and computation of finite-time Lyapunov exponents. Chaos 27, 063103. (doi:10.1063/1.4984627) · Zbl 1390.37137 · doi:10.1063/1.4984627
[20] Musharbash E, Nobile F. 2018 Dual dynamically orthogonal approximation of incompressible Navier Stokes equations with random boundary conditions. J. Comput. Phys. 354, 135-162. (doi:10.1016/j.jcp.2017.09.061) · Zbl 1380.35171 · doi:10.1016/j.jcp.2017.09.061
[21] Exascale Mathematics Working Group. 2014 Applied mathematics research for exascale computing. Oakridge, TN: US Department of Energy. See https://collab.cels.anl.gov/display/examath/Exascale+Mathematics+Home.
[22] Kuramoto Y, Tsuzuki T. 1976 Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55, 356-369. (doi:10.1143/PTP.55.356) · doi:10.1143/PTP.55.356
[23] Sivashinsky GI, Michelson DM. 1980 On irregular wavy flow of a liquid film down a vertical plane. Prog. Theor. Phys. 63, 2112-2114. (doi:10.1143/PTP.63.2112) · doi:10.1143/PTP.63.2112
[24] Sivashinsky GI. 1977 Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations. Acta Astronaut. 4, 1177-1206. (doi:10.1016/0094-5765(77)90096-0) · Zbl 0427.76047 · doi:10.1016/0094-5765(77)90096-0
[25] Driscoll TA, Hale N, Trefethen LN. 2014 Chebfun guide. Oxford, UK: Pafnuty Publications.
[26] Blanchard A, Mowlavi S, Sapsis T. 2018 Control of linear instabilities by dynamically consistent order reduction on optimally time-dependent modes. Nonlinear Dyn. 95, 2745-2764. (doi:10.1007/s11071-018-4720-1) · Zbl 1437.70036 · doi:10.1007/s11071-018-4720-1
[27] Babaee H. 2013 Uncertainty quantification of film cooling effectiveness in gas turbines. Master’s thesis, Louisiana State University, Baton Rouge, LA, USA.
[28] Bagheri S, Schlatter P, Schmid PJ, Henningson DS. 2009 Global stability of a jet in crossflow. J. Fluid Mech. 624, 33-44. (doi:10.1017/S0022112009006053) · Zbl 1171.76372 · doi:10.1017/S0022112009006053
[29] Karniadakis GE, Sherwin SJ. 2005 Spectral/hp element methods for computational fluid dynamics. Oxford, UK: Oxford University Press. · Zbl 1116.76002
[30] Zhang D, Babaee H, Karniadakis G. 2018 Stochastic domain decomposition via moment minimization. SIAM J. Sci. Comput. 40, A2152-A2173. (doi:10.1137/17M1160756) · Zbl 1391.60167 · doi:10.1137/17M1160756
[31] Chorin AJ, Hald OH, Kupferman R. 2002 Optimal prediction with memory. Physica D 166, 239-257. (doi:10.1016/S0167-2789(02)00446-3) · Zbl 1017.60046 · doi:10.1016/S0167-2789(02)00446-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.