×

Spectral characteristics of Schrödinger operators generated by product systems. (English) Zbl 1528.35037

The paper under review deals with discrete one-dimensional Schrödinger operators, i.e., operators in \(\ell^2(\mathbb{Z})\) of the form \[ H := \Delta + V, \] where \(\Delta\) is the discrete Laplacian and \(V\) is the multiplication operator by the potential \(V\colon \mathbb{Z}\to \mathbb{R}\), which is dynamically defined in the following sense: given a dynamical system \((\mathbb{X},S)\) (i.e.,\(\mathbb{X}\) is a compact metric space and \(S\) is a homeomorphism on \(\mathbb{X}\)) and \(f\colon \mathbb{X}\to \mathbb{R}\) continuous, then \[ V(n):=f(S^nx) ,\quad n\in\mathbb{Z} \] for some \(x\in\mathbb{X}\).
The key point of interest are now such operators which come from product dynamical systems; that is \(\mathbb{X} = \mathbb{X}_1 \times \mathbb{X}_2\) and \(S = S_1\times S_2\). Examples contained in this class may be sums of two potentials (e.g., periodic plus random, or periodic plus periodic with incommenuate frequencies) which are of the form \[ V(n) = V_1(n) + V_2(n) , \quad n\in\mathbb{Z}, \] where \(f(x^1,x^2):=f_1(x^1) + f_2(x^2)\) and \(f_j\) generates \(V_j\) as above, but also \(V\) generated by \[ f(x^1,x^2):= f_1(x^1)\cdot f_2(x^2), \] i.e., multiplicative modulation.
The paper investigates spectral results for such operator (or operator families) \(H\), in particular Cantor spectra of zero Lebesgue measure (sum of a potential generated by a locally constant function sampled over a minimal subshift satisfying Boshernitzans condition and a periodic potential; as well as their product instead of sum), absence of eigenvalues, representation of the spectrum by spectra of periodic modification of random potentials, and (sub-/super-)criticality in case of periodic perturbations of quasiperiodic potentials with applications of the almost Mathieu operator.

MSC:

35J10 Schrödinger operator, Schrödinger equation
37B10 Symbolic dynamics
47B36 Jacobi (tridiagonal) operators (matrices) and generalizations
52C23 Quasicrystals and aperiodic tilings in discrete geometry
58J51 Relations between spectral theory and ergodic theory, e.g., quantum unique ergodicity
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

References:

[1] H. Asatryan and W. Kirsch, Random Schrödinger operators with a background potential. Random Oper. Stoch. Equ. 27 (2019), no. 4, 253-259 Zbl 1439.35146 MR 4036649 · Zbl 1439.35146
[2] A. Avila, Almost reducibility and absolute continuity I. 2010, arXiv:1006.0704
[3] A. Avila, Global theory of one-frequency Schrödinger operators. Acta Math. 215 (2015), no. 1, 1-54 Zbl 1360.37072 MR 3413976 · Zbl 1360.37072
[4] A. Avila, Almost reducibility and absolute continuity II. In preparation
[5] A. Avila, J. Bochi, and J.-C. Yoccoz, Uniformly hyperbolic finite-valued SL.2;
[6] R/-cocy-cles. Comment. Math. Helv. 85 (2010), no. 4, 813-884 Zbl 1201.37032 MR 2718140
[7] P. Berk, K. Frączek, and T. de la Rue, On typicality of translation flows which are disjoint with their inverse. J. Inst. Math. Jussieu 19 (2020), no. 5, 1677-1737 Zbl 1460.37001 MR 4138955 · Zbl 1460.37001
[8] J. Berstel, On the index of Sturmian words. In Jewels are forever, pp. 287-294, Springer, Berlin, 1999 Zbl 0982.11010 MR 1719097 · Zbl 0982.11010
[9] V. Berthé, W. Steiner, J. M. Thuswaldner, and R. Yassawi, Recognizability for sequences of morphisms. Ergodic Theory Dynam. Systems 39 (2019), no. 11, 2896-2931 Zbl 1476.37022 MR 4015135 · Zbl 1476.37022
[10] M. Boshernitzan, A condition for minimal interval exchange maps to be uniquely ergodic. Duke Math. J. 52 (1985), no. 3, 723-752 Zbl 0602.28009 MR 808101 · Zbl 0602.28009
[11] M. D. Boshernitzan, A condition for unique ergodicity of minimal symbolic flows. Ergodic Theory Dynam. Systems 12 (1992), no. 3, 425-428 Zbl 0756.58030 MR 1182655 · Zbl 0756.58030
[12] J. Bourgain, Green’s function estimates for lattice Schrödinger operators and applications. Ann. Math. Stud. 158, Princeton University Press, Princeton, NJ, 2005 Zbl 1137.35001 MR 2100420 · Zbl 1137.35001
[13] J. Bourgain and M. Goldstein, On nonperturbative localization with quasi-periodic poten-tial. Ann. of Math. (2) 152 (2000), no. 3, 835-879 Zbl 1053.39035 MR 1815703 · Zbl 1053.39035
[14] X. Bressaud, F. Durand, and A. Maass, Necessary and sufficient conditions to be an eigen-value for linearly recurrent dynamical Cantor systems. J. London Math. Soc. (2) 72 (2005), no. 3, 799-816 Zbl 1095.54016 MR 2190338 · Zbl 1095.54016
[15] V. Bucaj, D. Damanik, J. Fillman, V. Gerbuz, T. VandenBoom, F. Wang, and Z. Zhang, Positive Lyapunov exponents and a large deviation theorem for continuum Anderson mod-els, briefly. J. Funct. Anal. 277 (2019), no. 9, 3179-3186 Zbl 1478.35108 MR 3997633 · Zbl 1478.35108
[16] A. Cai, P. Duarte, and S. Klein, Mixed random-quasiperiodic cocycles. Bull. Braz. Math. Soc. (N.S.) 53 (2022), no. 4, 1469-1497 Zbl 07610212 MR 4502841 · Zbl 1512.37060
[17] J. Cassaigne, Sequences with grouped factors. In S. Bozapalidis (ed.), Proceedings of the 3rd International Conference Developments in Language Theory, pp. 211-222. Aristotle University of Thessaloniki, 1997
[18] J.-M. Combes and P. D. Hislop, Localization for some continuous, random Hamiltonians in d -dimensions. J. Funct. Anal. 124 (1994), no. 1, 149-180 Zbl 0801.60054 MR 1284608 · Zbl 0801.60054
[19] H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with appli-cation to quantum mechanics and global geometry. Study edn., Texts and Monographs in Physics, Springer, Berlin, 1987 Zbl 0619.47005 MR 883643 · Zbl 0619.47005
[20] D. Damanik, Gordon-type arguments in the spectral theory of one-dimensional quasicrys-tals. In Directions in mathematical quasicrystals, pp. 277-305, CRM Monogr. Ser. 13, Amer. Math. Soc., Providence, RI, 2000 Zbl 0989.81025 MR 1798997 · Zbl 0989.81025
[21] D. Damanik, Uniform singular continuous spectrum for the period doubling Hamiltonian. Ann. Henri Poincaré 2 (2001), no. 1, 101-108 Zbl 1002.47015 MR 1823835 · Zbl 1002.47015
[22] D. Damanik, Schrödinger operators with dynamically defined potentials. Ergodic Theory Dynam. Systems 37 (2017), no. 6, 1681-1764 Zbl 06823048 MR 3681983 · Zbl 1541.81060
[23] Operators generated by product systems 1715
[24] D. Damanik and J. Fillman, One-dimensional ergodic Schrödinger operators I. General theory. Grad. Stud. Math. 221, American Mathematical Society, Providence, RI, 2022 Zbl 07517379 · Zbl 1504.58001
[25] D. Damanik and J. Fillman, One-Dimensional ergodic Schrödinger operators. II. Specific Classes. In preparation
[26] D. Damanik and J. Fillman, Gap labelling for discrete one-dimensional ergodic Schrö-dinger operators. 2022, arXiv:2203.03696, to appear in From Complex Analysis to Oper-ator Theory: A Panorama, Springer, Cham
[27] D. Damanik and A. Gorodetski, Must the spectrum of a random Schrödinger operator contain an interval? Comm. Math. Phys. 393 (2022), no. 3, 1583-1613 Zbl 07565222 MR 4453241 · Zbl 07565222
[28] D. Damanik and D. Lenz, Uniform spectral properties of one-dimensional quasicrystals. I. Absence of eigenvalues. Comm. Math. Phys. 207 (1999), no. 3, 687-696 · Zbl 0962.81012
[29] D. Damanik and D. Lenz, Uniform spectral properties of one-dimensional quasicrystals. IV. Quasi-Sturmian potentials. J. Anal. Math. 90 (2003), 115-139 Zbl 1173.81315 MR 2001067 · Zbl 1173.81315
[30] D. Damanik and D. Lenz, A condition of Boshernitzan and uniform convergence in the multiplicative ergodic theorem. Duke Math. J. 133 (2006), no. 1, 95-123 Zbl 1118.37009 MR 2219271 · Zbl 1118.37009
[31] D. Damanik and D. Lenz, Substitution dynamical systems: characterization of linear repet-itivity and applications. J. Math. Anal. Appl. 321 (2006), no. 2, 766-780 Zbl 1094.37007 MR 2241154 · Zbl 1094.37007
[32] D. Damanik and D. Lenz, Zero-measure Cantor spectrum for Schrödinger operators with low-complexity potentials. J. Math. Pures Appl. (9) 85 (2006), no. 5, 671-686 Zbl 1122.47028 MR 2229664 · Zbl 1122.47028
[33] D. Damanik, R. Sims, and G. Stolz, Localization for discrete one-dimensional random word models. J. Funct. Anal. 208 (2004), no. 2, 423-445 Zbl 1043.47032 MR 2035031 · Zbl 1043.47032
[34] F. M. Dekking, The spectrum of dynamical systems arising from substitutions of constant length. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 41 (1977/78), no. 3, 221-239 Zbl 0348.54034 MR 461470 · Zbl 0348.54034
[35] A. del Junco, Disjointness of measure-preserving transformations, minimal self-joinings and category. In Ergodic theory and dynamical systems, I (College Park, Md., 1979-80), pp. 81-89, Progr. Math. 10, Birkhäuser, Boston, Mass., 1981 Zbl 0467.28011 MR 633762 · Zbl 0467.28011
[36] F. Delyon and B. Souillard, The rotation number for finite difference operators and its properties. Comm. Math. Phys. 89 (1983), no. 3, 415-426 Zbl 0525.39003 MR 709475 · Zbl 0525.39003
[37] T. Downarowicz, Survey of odometers and Toeplitz flows. In Algebraic and topological dynamics, pp. 7-37, Contemp. Math. 385, Amer. Math. Soc., Providence, RI, 2005 · Zbl 1096.37002
[38] Zbl 1096.37002 MR 2180227
[39] F. Durand and V. Goyheneche, Decidability, arithmetic subsequences and eigenvalues of morphic subshifts. Bull. Belg. Math. Soc. Simon Stevin 26 (2019), no. 4, 591-618 Zbl 1432.37018 MR 4042403 · Zbl 1432.37018
[40] D. Damanik, J. Fillman, and P. Gohlke 1716
[41] A. Elgart and A. Klein, Ground state energy of trimmed discrete Schrödinger operators and localization for trimmed Anderson models. J. Spectr. Theory 4 (2014), no. 2, 391-413 Zbl 1304.82039 MR 3232816 · Zbl 1304.82039
[42] A. Elgart and S. Sodin, The trimmed Anderson model at strong disorder: localisation and its breakup. J. Spectr. Theory 7 (2017), no. 1, 87-110 Zbl 1460.47020 MR 3629408 · Zbl 1460.47020
[43] A. Fedotov and F. Klopp, On the absolutely continuous spectrum of one-dimensional quasi-periodic Schrödinger operators in the adiabatic limit. Trans. Amer. Math. Soc. 357 (2005), no. 11, 4481-4516 Zbl 1101.34069 MR 2156718 · Zbl 1101.34069
[44] S. Ferenczi, C. Mauduit, and A. Nogueira, Substitution dynamical systems: algebraic char-acterization of eigenvalues. Ann. Sci. École Norm. Sup. (4) 29 (1996), no. 4, 519-533 Zbl 0866.11023 MR 1386224 · Zbl 0866.11023
[45] N. P. Fogg, Substitutions in dynamics, arithmetics and combinatorics. Lect. Notes Math. 1794, Springer, Berlin, 2002 Zbl 1014.11015 MR 1970385 · Zbl 1014.11015
[46] J. Fröhlich, T. Spencer, and P. Wittwer, Localization for a class of one-dimensional quasi-periodic Schrödinger operators. Comm. Math. Phys. 132 (1990), no. 1, 5-25 Zbl 0722.34070 MR 1069198 · Zbl 0722.34070
[47] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Systems Theory 1 (1967), 1-49 Zbl 0146.28502 MR 213508 · Zbl 0146.28502
[48] F. Germinet and A. Klein, A comprehensive proof of localization for continuous Ander-son models with singular random potentials. J. Eur. Math. Soc. (JEMS) 15 (2013), no. 1, 53-143 Zbl 1267.82066 MR 2998830 · Zbl 1267.82066
[49] E. Glasner, Ergodic theory via joinings. Mathematical Surveys and Monographs 101, American Mathematical Society, Providence, RI, 2003 Zbl 1038.37002 MR 1958753 · Zbl 1038.37002
[50] A. J. Gordon, The point spectrum of the one-dimensional Schrödinger operator. Uspehi Mat. Nauk 31 (1976), no. 4(190), 257-258 MR 0458247 · Zbl 0342.34012
[51] W. H. Gottschalk and G. A. Hedlund, Topological dynamics. Colloq. Publ., Am. Math. Soc. 36, American Mathematical Society, Providence, R.I., 1955 Zbl 0067.15204 MR 0074810 · Zbl 0067.15204
[52] M.-R. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exem-ples montrant le caractère local d’un théorème d’Arnol’d et de Moser sur le tore de dimension 2. Comment. Math. Helv. 58 (1983), no. 3, 453-502 Zbl 0554.58034 MR 727713 · Zbl 0554.58034
[53] B. Host, Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable. Ergodic Theory Dynam. Systems 6 (1986), no. 4, 529-540 · Zbl 0625.28011
[54] S. Jitomirskaya, Ergodic Schrödinger operators (on one foot). In Spectral theory and math-ematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, pp. 613-647, Proc. Sympos. Pure Math. 76, Amer. Math. Soc., Providence, RI, 2007 Zbl 1129.82018 MR 2307750 · Zbl 1129.82018
[55] R. Johnson and J. Moser, The rotation number for almost periodic potentials. Comm. Math. Phys. 84 (1982), no. 3, 403-438 Zbl 0497.35026 MR 667409 · Zbl 0497.35026
[56] R. A. Johnson, Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients. J. Differential Equations 61 (1986), no. 1, 54-78 · Zbl 0608.34056
[57] R. Kenyon, L. Sadun, and B. Solomyak, Topological mixing for substitutions on two let-ters. Ergodic Theory Dynam. Systems 25 (2005), no. 6, 1919-1934 Zbl 1087.37006 MR 2183301 · Zbl 1087.37006
[58] A. Y. Khinchin, Continued fractions. With a preface by B. V. Gnedenko, Translated from the third (1961) Russian edition, Reprint of the 1964 translation, Dover Publications, Mineola, NY, 1997 Zbl 0117.28601 MR 1451873
[59] W. Kirsch and M. Krishna, Spectral statistics for Anderson models with sporadic poten-tials. J. Spectr. Theory 10 (2020), no. 2, 581-597 Zbl 1448.60149 MR 4107525 · Zbl 1448.60149
[60] W. Kirsch, P. Stollmann, and G. Stolz, Anderson localization for random Schrödinger operators with long range interactions. Comm. Math. Phys. 195 (1998), no. 3, 495-507 Zbl 0928.47049 MR 1640991 · Zbl 0928.47049
[61] W. Kirsch, P. Stollmann, and G. Stolz, Localization for random perturbations of periodic Schrödinger operators. Random Oper. Stochastic Equations 6 (1998), no. 3, 241-268 Zbl 0927.60067 MR 1630995 · Zbl 0927.60067
[62] F. Klopp, Internal Lifshits tails for random perturbations of periodic Schrödinger opera-tors. Duke Math. J. 98 (1999), no. 2, 335-396 Zbl 1060.82509 MR 1695202 · Zbl 1060.82509
[63] F. Klopp, Correction to: “Internal Lifshits tails for random perturbations of periodic Schrödinger operators.” Duke Math. J. 109 (2001), no. 2, 411-412 Zbl 1060.82509 MR 1845184 · Zbl 1060.82509
[64] P. Kůrka, Topological and symbolic dynamics. Cours Spéc. (Paris) 11, Société Mathéma-tique de France, Paris, 2003 Zbl 1038.37011 MR 2041676
[65] M. Lemańczyk, Spectral theory of dynamical systems. In Mathematics of complexity and dynamical systems. Vols. 1-3, pp. 1618-1638, Springer, New York, 2012 MR 3220776
[66] Q.-H. Liu and Y.-H. Qu, Uniform convergence of Schrödinger cocycles over simple Toeplitz subshift. Ann. Henri Poincaré 12 (2011), no. 1, 153-172 Zbl 1211.81059 MR 2770093 · Zbl 1211.81059
[67] C. A. Marx and S. Jitomirskaya, Dynamics and spectral theory of quasi-periodic Schrö-dinger-type operators. Ergodic Theory Dynam. Systems 37 (2017), no. 8, 2353-2393 Zbl 1384.37011 MR 3719264 · Zbl 1384.37011
[68] C. A. Marx, L. H. Shou, and J. L. Wellens, Subcritical behavior for quasi-periodic Schrödinger cocycles with trigonometric potentials. J. Spectr. Theory 8 (2018), no. 1, 123-163 Zbl 1474.37031 MR 3762129 · Zbl 1474.37031
[69] R. R. Phelps, Lectures on Choquet’s theorem. Second edn., Lect. Notes Math. 1757, Springer, Berlin, 2001 Zbl 0997.46005 MR 1835574 · Zbl 0997.46005
[70] M. Powell, Positivity of the Lyapunov exponent for analytic quasiperiodic operators with arbitrary finite-valued background. 2022, arXiv:2206.04159
[71] M. Queffélec, Substitution dynamical systems. Second edn. Lecture Notes in Mathematics, 1294. Springer, Berlin, 2010 MR 2590264 Zbl 1225.11001 · Zbl 1225.11001
[72] C. Rojas-Molina, The Anderson model with missing sites. Oper. Matrices 8 (2014), no. 1, 287-299 Zbl 1291.82059 MR 3202941 · Zbl 1291.82059
[73] D. J. Rudolph, An example of a measure preserving map with minimal self-joinings, and applications. J. Analyse Math. 35 (1979), 97-122 Zbl 0446.28018 MR 555301 · Zbl 0446.28018
[74] A. Seelmann and M. Täufer, Band edge localization beyond regular Floquet eigenvalues. Ann. Henri Poincaré 21 (2020), no. 7, 2151-2166 Zbl 07216429 MR 4117489 · Zbl 07216429
[75] E. Sorets and T. Spencer, Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials. Comm. Math. Phys. 142 (1991), no. 3, 543-566 · Zbl 0745.34046
[76] G. Teschl, Jacobi operators and completely integrable nonlinear lattices. Math. Surv. Monogr. 72, American Mathematical Society, Providence, RI, 2000 Zbl 1056.39029 MR 1711536
[77] J.-P. Thouvenot, Some properties and applications of joinings in ergodic theory. In Ergodic theory and its connections with harmonic analysis (Alexandria, 1993), pp. 207-235, Lon-don Math. Soc. Lecture Note Ser. 205, Cambridge Univ. Press, Cambridge, 1995 · Zbl 0848.28009
[78] W. A. Veech, The metric theory of interval exchange transformations. I. Generic spectral properties. Amer. J. Math. 106 (1984), no. 6, 1331-1359 Zbl 0631.28006 MR 765582 · Zbl 0631.28006
[79] I. Veselić, Localization for random perturbations of periodic Schrödinger operators with regular Floquet eigenvalues. Ann. Henri Poincaré 3 (2002), no. 2, 389-409 Zbl 1009.81018 MR 1914147 · Zbl 1009.81018
[80] P. Walters, An introduction to ergodic theory. Grad. Texts Math. 79, Springer, Berlin etc., 1982 Zbl 0475.28009 MR 648108 · Zbl 0475.28009
[81] Y. Wang, X. Xia, J. You, Z. Zheng, and Q. Zhou, Exact mobility edges for 1D quasiperiodic models. 2021, arXiv:2110.00962
[82] W. Wood, On the spectrum of the periodic Anderson-Bernoulli model. J. Math. Phys. 63 (2022), no. 10, Paper No. 102705, 16 Zbl 07664913 MR 4497771 · Zbl 1507.34101
[83] X. D. Ye, D-function of a minimal set and an extension of Sharkovskiȋ’s theorem to min-imal sets. Ergodic Theory Dynam. Systems 12 (1992), no. 2, 365-376 Zbl 0738.54019 MR 1176630 · Zbl 0738.54019
[84] Z. Zhang, Uniform hyperbolicity and its relation with spectral analysis of 1D discrete Schrödinger operators. J. Spectr. Theory 10 (2020), no. 4, 1471-1517 Zbl 1482.37030 MR 4192758 · Zbl 1482.37030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.