×

A phase field-based systematic multiscale topology optimization method for porous structures design. (English) Zbl 07561066

Summary: In this paper, we propose a novel and systematic phase field-based multiscale topology optimization method for porous structures design. The multi-regional microstructural composite and fixed microstructural shapes are adopted to balance the objective and other constraints. The connectivity issue between different microstructures is handled. In the multiscale topology optimization, the macro and micro design variables are updated by the Allen-Cahn type equations which include a reaction-diffusion term, a sensitivity analysis term, a volume constraint term, and a correction term. The correction term is used to keep topologies of macro and micro structures closed to the prescribed structures. We use an efficient merging algorithm to handle the connectivity issue between different microstructures. Based on an interpolation technique of the phase field function and a modified Allen-Cahn equation, this algorithm can smooth the connecting boundaries and satisfy the minimum surface theorem. The final distribution of microstructures keeps the extraordinary physical and mechanical properties for the macrostructure. Some typical cantilever beam, Michell-type structure and Messerschmitt-Bölkow-Blohm beam are performed to verify the effectiveness of our method.

MSC:

74Pxx Optimization problems in solid mechanics
74Exx Material properties given special treatment
74Sxx Numerical and other methods in solid mechanics
Full Text: DOI

References:

[1] Gibson, L. J.; Ashby, M. F., Cellular Solids: Structure and Properties (1999), Cambridge University Press
[2] Zheng, Y.; Luo, Z.; Wang, Y.; Li, Z.; Qu, J.; Zhang, C., Optimized high thermal insulation by the topological design of hierarchical structures, Int. J. Heat Mass Transf., 186, Article 122448 pp. (2022)
[3] Weina, F.; Chen, N.; Iqbal, N.; Stingl, M.; Avila, M., Topology optimization of unsaturated flows in multi-material porous media: application to a simple diaper model, Commun. Nonlinear Sci. Numer. Simul., 78, Article 104871 pp. (2019) · Zbl 1460.76770
[4] Han, S. C.; Lee, J. W.; Kang, K., A new type of low density material: Shellular, Adv. Mater., 27, 5506-5511 (2015)
[5] Li, H.; Luo, Z.; Gao, L.; Qin, Q., Topology optimization for concurrent design of structures with multi-patch microstructures by level sets, Comput. Methods Appl. Mech. Eng., 331, 536-561 (2018) · Zbl 1439.74284
[6] Gao, J.; Luo, Z.; Li, H.; Gao, L., Topology optimization for multiscale design of porous composites with multi-domain microstructures, Comput. Methods Appl. Mech. Eng., 344, 451-476 (2019) · Zbl 1440.74295
[7] Gao, J.; Luo, Z.; Li, H.; Li, P.; Gao, L., Dynamic multiscale topology optimization for multi-regional microstructured cellular composites, Compos. Struct., 211, 401-417 (2019)
[8] Gao, J.; Luo, Z.; Xia, L.; Gao, L., Concurrent topology optimization of multiscale composite structures in Matlab, Struct. Multidiscip. Optim., 60, 2621-2651 (2019)
[9] Da, D.; Cui, X.; Long, K.; Cai, Y.; Li, G., Multiscale concurrent topology optimization of structures and microscopic multi-phase materials for thermal conductivity, Eng. Comput., 36, 1, 126-146 (2019)
[10] Kim, D.; Lee, J.; Nomurab, T.; Dedec, E. M.; Yood, J.; Mine, S., Topology optimization of functionally graded anisotropic composite structures using homogenization design method, Comput. Methods Appl. Mech. Eng., 369, Article 113220 pp. (2020) · Zbl 1506.74282
[11] Kumar, T.; Sridhara, S.; Prabhune, B.; Suresh, K., Spectral decomposition for graded multi-scale topology optimization, Comput. Methods Appl. Mech. Eng., 377, Article 113670 pp. (2021) · Zbl 1506.74283
[12] Long, K.; Han, D.; Gu, X., Concurrent topology optimization of composite macrostructure and microstructure constructed by constituent phases of distinct Poisson’s ratios for maximum frequency, Comput. Mater. Sci., 129, 194-201 (2017)
[13] Zhang, Y.; Xiao, M.; Gao, L.; Gao, J.; Li, H., Multiscale topology optimization for minimizing frequency responses of cellular composites with connectable graded microstructures, Mech. Syst. Signal Process., 135, Article 106369 pp. (2020)
[14] Sigmund, O.; Maute, K., Topology optimization approaches: a comparative review, Struct. Multidiscip. Optim., 48, 1031-1055 (2013)
[15] Wu, J.; Sigmund, O.; Groen, J. P., Topology optimization of multi-scale structures: a review, Struct. Multidiscip. Optim., 63, 1455-1480 (2021)
[16] Li, H.; Luo, Z.; Zhang, N.; Gao, L.; Brown, T., Integrated design of cellular composites using a level-set topology optimization method, Comput. Methods Appl. Mech. Eng., 309, 453-475 (2016) · Zbl 1439.74286
[17] Sivapuram, R.; Dunning, P. D.; Kim, H. A., Simultaneous material and structural optimization by multiscale topology optimization, Struct. Multidiscip. Optim., 54, 1267-1281 (2016)
[18] Wang, Y.; Kang, Z., Concurrent two-scale topological design of multiple unit cells and structure using combined velocity field level set and density model, Comput. Methods Appl. Mech. Eng., 347, 340-364 (2019) · Zbl 1440.74318
[19] Zhou, S.; Li, Q., Design of graded two-phase microstructures for tailored elasticity gradients, J. Mater. Sci., 43, 5157-5167 (2008)
[20] Du, Z.; Zhou, X.; Picelli, R.; Kim, H. A., Connecting microstructures for multiscale topology optimization with connectivity index constraints, J. Mech. Des., 140, Article 111417 pp. (2018)
[21] Bendsoe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods, and Applications (2003), Springer Science & Business Media · Zbl 1059.74001
[22] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng., 71, 197-224 (1988) · Zbl 0671.73065
[23] Guedes, J. M.; Kikuchi, N., Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods, Comput. Methods Appl. Mech. Eng., 83, 143-198 (1990) · Zbl 0737.73008
[24] Allaire, G.; Cavallina, L.; Miyake, N.; Oka, T.; Yachimura, T., The homogenization method for topology optimization of structures: old and new, Interdiscip. Inf. Sci., 25, 2, 75-146 (2019) · Zbl 1452.74096
[25] Zhou, M.; Rozvany, G. I.N., The COC algorithm, part II: topological, geometrical and generalized shape optimization, Comput. Methods Appl. Mech. Eng., 89, 309-336 (1991)
[26] Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B. S.; Sigmund, O., Efficient topology optimization in Matlab using 88 lines of code, Struct. Multidiscip. Optim., 43, 1-16 (2011) · Zbl 1274.74310
[27] Xie, Y. M.; Steven, G. P., A simple evolutionary procedure for structural optimization, Comput. Struct., 49, 5, 885-896 (1993)
[28] Huang, X.; Zhou, S.; Xie, Y.; Li, Q., Topology optimization of microstructures of cellular materials and composites for macrostructures, Comput. Mater. Sci., 67, 397-407 (2013)
[29] Wang, M. Y.; Wang, X.; Guo, D., A level set method for structural topology optimization, Comput. Methods Appl. Mech. Eng., 192, 227-246 (2003) · Zbl 1083.74573
[30] Luo, Z.; Wang, M. Y.; Wang, S.; Wei, P., A level set-based parameterization method for structural shape and topology optimization, Int. J. Numer. Methods Eng., 76, 1-26 (2008) · Zbl 1158.74443
[31] Zhao, J.; Yang, X.; Gong, Y.; Zhao, X.; Yang, X.; Li, J.; Wang, Q., A general strategy for numerical approximations of non-equilibrium models-part 1: thermodynamical systems, Int. J. Numer. Anal. Model., 15, 6, 884-918 (2018) · Zbl 1412.65099
[32] Meng, X.; Qiao, Z.; Wang, C.; Zhang, Z., Artificial regularization parameter analysis for the no-slope-selection epitaxial thin film model, CSIAM T. Appl. Math., 1, 441-462 (2020)
[33] Gong, Y.; Zhao, J.; Wang, Q., Arbitrarily high-order linear energy stable schemes for gradient flow models, J. Comput. Phys., 419, Article 109610 pp. (2020) · Zbl 07507221
[34] Li, Y.; Wang, K.; Yu, Q.; Xia, Q.; Kim, J., Unconditionally energy stable schemes for fluid-based topology optimization, Commun. Nonlinear Sci. Numer. Simul., 111, Article 106433 pp. (2022) · Zbl 07526842
[35] Takezawa, A.; Nishiwaki, S.; Kitamura, M., Shape and topology optimization based on the phase field method and sensitivity analysis, J. Comput. Phys., 229, 2697-2718 (2010) · Zbl 1185.65109
[36] Choi, J. S.; Yamada, T.; Izui, K.; Nishiwaki, S.; Yoo, J., Topology optimization using a reaction-diffusion equation, Comput. Methods Appl. Mech. Eng., 200, 2407-2420 (2011) · Zbl 1230.74151
[37] Allen, S. M.; Cahn, J. W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27, 6, 1085-1095 (1979)
[38] Li, Y.; Guo, S., Triply periodic minimal surface using a modified Allen-Cahn equation, Appl. Math. Comput., 295, 84-94 (2017) · Zbl 1411.82029
[39] Carraturo, M.; Rocca, E.; Bonetti, E.; Hömberg, D.; Reali, A.; Auricchio, F., Graded-material design based on phase-field and topology optimization, Comput. Mech., 64, 1589-1600 (2019) · Zbl 1462.74129
[40] Auricchio, F.; Bonetti, E.; Carraturo, M.; Hömberg, D.; Reali, A.; Rocca, E., A phase-field-based graded-material topology optimization with stress constraint, Math. Models Methods Appl. Sci., 30, 8, 1461-1483 (2020) · Zbl 1444.74047
[41] Yu, Q.; Wang, K.; Xia, B.; Li, Y., First and second order unconditionally energy stable schemes for topology optimization based on phase field method, Appl. Math. Comput., 405, Article 126267 pp. (2021) · Zbl 1510.65255
[42] Chi, H.; Zhang, Y.; Tang, T.; Mirabella, L.; Dalloro, L.; Song, L.; Paulino, G. H., Universal machine learning for topology optimization, Comput. Methods Appl. Mech. Eng., 375, Article 112739 pp. (2021) · Zbl 1506.74267
[43] Li, Y.; Xia, Q.; Yoon, S.; Lee, C.; Lu, B.; Kim, J., Simple and efficient volume merging method for triply periodic minimal structures, Comput. Phys. Commun., 264, Article 107956 pp. (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.