×

Robust, strong form mechanics on an adaptive structured grid: efficiently solving variable-geometry near-singular problems with diffuse interfaces. (English) Zbl 1536.74309

Summary: Many solid mechanics problems on complex geometries are conventionally solved using discrete boundary methods. However, such an approach can be cumbersome for problems involving evolving domain boundaries due to the need to track boundaries and constant remeshing. The purpose of this work is to present a comprehensive strategy for efficiently solving such problems on an adaptive structured grid, while expositing some of the basic yet important nuances associated with solving near-singular problems in strong form. We employ a robust smooth boundary method (SBM) that represents complex geometry implicitly, in a larger and simpler computational domain, as the support of a smooth indicator function. We present the resulting semidefinite equations for mechanical equilibrium, in which inhomogeneous boundary conditions are replaced by source terms. In this work, we present a computational strategy for efficiently solving near-singular SBM-based solid mechanics problems. We use the block-structured adaptive mesh refinement method, coupled with a geometric multigrid solver for an efficient solution of mechanical equilibrium. We discuss some of the practical numerical strategies for implementing this method, notably including the importance of grid versus node-centered fields. We demonstrate the solver’s accuracy and performance for three representative examples: (a) plastic strain evolution around a void, (b) crack nucleation and propagation in brittle materials, and (c) structural topology optimization. In each case, we show that very good convergence of the solver is achieved, even with large near-singular areas, and that any convergence issues arise from other complexities, such as stress concentrations.

MSC:

74S99 Numerical and other methods in solid mechanics
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74R10 Brittle fracture
74P15 Topological methods for optimization problems in solid mechanics

Software:

Wesseling; AMReX

References:

[1] Runnels, B.; Agrawal, V.; Zhang, W.; Almgren, A., Massively parallel finite difference elasticity using block-structured adaptive mesh refinement with a geometric multigrid solver, J Comput Phys, 427 (2021) · Zbl 07510250 · doi:10.1016/j.jcp.2020.110065
[2] Celestine, A-DN; Agrawal, V.; Runnels, B., Experimental and numerical investigation into mechanical degradation of polymers, Compos Part B Eng, 201 (2020) · doi:10.1016/j.compositesb.2020.108369
[3] Runnels, B.; Agrawal, V., Phase field disconnections: a continuum method for disconnection-mediated grain boundary motion, Scr Mater, 186, 6-10 (2020) · doi:10.1016/j.scriptamat.2020.04.042
[4] Gokuli, M.; Runnels, B., Multiphase field modeling of grain boundary migration mediated by emergent disconnections, Acta Mater, 217 (2021) · doi:10.1016/j.actamat.2021.117149
[5] Strutton, JW; Moser, NH; Garboczi, EJ; Jennings, AR; Runnels, B.; McCollum, JM, Interface history on strain field evolution in epoxy resins, ACS Appl Polym Mater, 4, 1535-1542 (2022) · doi:10.1021/acsapm.1c01930
[6] Agrawal, V.; Runnels, B., Block structured adaptive mesh refinement and strong form elasticity approach to phase field fracture with applications to delamination, crack branching and crack deflection, Comput Methods Appl Mech Eng, 385 (2021) · Zbl 1502.74096 · doi:10.1016/j.cma.2021.114011
[7] Chadwick, AF; Stewart, JA; Enrique, RA; Du, S.; Thornton, K., Numerical modeling of localized corrosion using phase-field and smoothed boundary methods, J Electrochem Soc, 165, 10, C633 (2018) · doi:10.1149/2.0701810jes
[8] Schmidt, EM; Quinlan, JM; Runnels, B., Self-similar diffuse boundary method for phase boundary driven flow, Phys Fluids, 34, 117108 (2022) · doi:10.1063/5.0107739
[9] Yu, H-C; Chen, H-Y; Thornton, K., Extended smoothed boundary method for solving partial differential equations with general boundary conditions on complex boundaries, Model Simul Mater Sci Eng, 20, 7 (2012) · doi:10.1088/0965-0393/20/7/075008
[10] Li, X.; Lowengrub, J.; Rätz, A.; Voigt, A., Solving PDEs in complex geometries: a diffuse domain approach, Commun Math Sci, 7, 1, 81 (2009) · Zbl 1178.35027 · doi:10.4310/CMS.2009.v7.n1.a4
[11] Zhang, W.; Almgren, A.; Beckner, V.; Bell, J.; Blaschke, J.; Chan, C.; Day, M.; Friesen, B.; Gott, K.; Graves, D., AMReX: a framework for block-structured adaptive mesh refinement, J Open Source Softw, 4, 37, 1370-1370 (2019) · doi:10.21105/joss.01370
[12] Hittinger, JA; Banks, JW, Block-structured adaptive mesh refinement algorithms for Vlasov simulation, J Comput Phys, 241, 118-140 (2013) · Zbl 1349.76339 · doi:10.1016/j.jcp.2013.01.030
[13] Schornbaum, F.; Rüde, U., Extreme-scale block-structured adaptive mesh refinement, SIAM J Sci Comput, 40, 3, C358-C387 (2018) · Zbl 06890193 · doi:10.1137/17M1128411
[14] Dubey, A.; Almgren, A.; Bell, J.; Berzins, M.; Brandt, S.; Bryan, G.; Colella, P.; Graves, D.; Lijewski, M.; Löffler, F., A survey of high level frameworks in block-structured adaptive mesh refinement packages, J Parallel Distrib Comput, 74, 12, 3217-3227 (2014) · doi:10.1016/j.jpdc.2014.07.001
[15] Berger, M.; Rigoutsos, I., An algorithm for point clustering and grid generation, IEEE Trans Syst Man Cybern, 21, 5, 1278-1286 (1991) · doi:10.1109/21.120081
[16] Almgren, AS; Bell, JB; Colella, P.; Howell, LH; Welcome, ML, A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations, J Comput Phys, 142, 1, 1-46 (1998) · Zbl 0933.76055 · doi:10.1006/jcph.1998.5890
[17] Piller, M.; Stalio, E., Finite-volume compact schemes on staggered grids, J Comput Phys, 197, 1, 299-340 (2004) · Zbl 1106.76406 · doi:10.1016/j.jcp.2003.10.037
[18] Alves, M.; Oliveira, P.; Pinho, F., Numerical methods for viscoelastic fluid flows, Annu Rev Fluid Mech, 53, 509-541 (2021) · Zbl 1459.76084 · doi:10.1146/annurev-fluid-010719-060107
[19] Wesseling P, Segal A, Vankan J, Oosterlee C, Kassels C (1991) Finite volume discretization of the incompressible Navier-Stokes equations in general coordinates on staggered grids. In: Presented at the 4th international symposium on computational fluid dynamics
[20] Anderson, JD; Wendt, J., Computational fluid dynamics (1995), Berlin: Springer, Berlin · Zbl 0834.76002
[21] Li, B.; Habbal, F.; Ortiz, M., Optimal transportation meshfree approximation schemes for fluid and plastic flows, Int J Numer Methods Eng, 83, 12, 1541-1579 (2010) · Zbl 1202.74200 · doi:10.1002/nme.2869
[22] Monaghan, JJ, Smoothed particle hydrodynamics, Annu Rev Astron Astrophys, 30, 543-574 (1992) · doi:10.1146/annurev.aa.30.090192.002551
[23] Sulsky, D.; Chen, Z.; Schreyer, HL, A particle method for history-dependent materials, Comput Methods Appl Mech Eng, 118, 1-2, 179-196 (1994) · Zbl 0851.73078 · doi:10.1016/0045-7825(94)90112-0
[24] Sulsky, D.; Zhou, S-J; Schreyer, HL, Application of a particle-in-cell method to solid mechanics, Comput Phys Commun, 87, 1-2, 236-252 (1995) · Zbl 0918.73334 · doi:10.1016/0010-4655(94)00170-7
[25] Liang, Y.; Zhang, X.; Liu, Y., An efficient staggered grid material point method, Comput Methods Appl Mech Eng, 352, 85-109 (2019) · Zbl 1441.74305 · doi:10.1016/j.cma.2019.04.024
[26] Cardiff, P.; Demirdžić, I., Thirty years of the finite volume method for solid mechanics, Arch Comput Methods Eng, 28, 5, 3721-3780 (2021) · doi:10.1007/s11831-020-09523-0
[27] Wesseling P (1995) Introduction to multigrid methods. Tech. rep · Zbl 0760.65092
[28] Kanso, E.; Arroyo, M.; Tong, Y.; Yavari, A.; Marsden, JG; Desbrun, M., On the geometric character of stress in continuum mechanics, Z Angew Math Phys, 58, 5, 843-856 (2007) · Zbl 1126.74003 · doi:10.1007/s00033-007-6141-8
[29] Yavari, A., On geometric discretization of elasticity, J Math Phys, 49, 2 (2008) · Zbl 1153.81451 · doi:10.1063/1.2830977
[30] Yavari, A., A geometric theory of growth mechanics, J Nonlinear Sci, 20, 6, 781-830 (2010) · Zbl 1428.74157 · doi:10.1007/s00332-010-9073-y
[31] Desbrun M, Kanso E, Tong Y (2006) Discrete differential forms for computational modeling. In: ACM SIGGRAPH 2006 courses, pp 39-54 · Zbl 1152.58001
[32] Zhu, C.; Lee, CT; Rangamani, P., Mem3dg: modeling membrane mechanochemical dynamics in 3d using discrete differential geometry, Biophys J, 121, 3, 71a (2022) · doi:10.1016/j.bpj.2021.11.2371
[33] Ruocco, E.; Reddy, J., A discrete differential geometry-based approach to buckling and vibration analyses of inhomogeneous Reddy plates, Appl Math Model, 100, 342-364 (2021) · Zbl 1481.74501 · doi:10.1016/j.apm.2021.08.011
[34] Frankel, T., The geometry of physics: an introduction (2011), Cambridge: Cambridge University Press, Cambridge · Zbl 1250.58001 · doi:10.1017/CBO9781139061377
[35] Aigner G, Hölzle U (1996) Eliminating virtual function calls in c++ programs. In: ECOOP’96-object-oriented programming: 10th European conference Linz, Austria, July 8-12, 1996 Proceedings 10. Springer, pp 142-166
[36] Eijkhout V, Chow E, van de Geijn R (2022) The science of computing
[37] Abrahams, D.; Gurtovoy, A., C++ template metaprogramming: concepts, tools, and techniques from Boost and beyond (2004), London: Pearson Education, London
[38] Bower, AF, Applied mechanics of solids (2009), Boca Raton: CRC Press, Boca Raton · doi:10.1201/9781439802489
[39] Simo, JC; Hughes, TJ, Computational inelasticity (2006), Berlin: Springer, Berlin · Zbl 0934.74003
[40] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int J Numer Methods Eng, 46, 1, 131-150 (1999) · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[41] Sukumar, N.; Moës, N.; Moran, B.; Belytschko, T., Extended finite element method for three-dimensional crack modelling, Int J Numer Methods Eng, 48, 11, 1549-1570 (2000) · Zbl 0963.74067 · doi:10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A
[42] Li, H.; Li, J.; Yuan, H., A review of the extended finite element method on macrocrack and microcrack growth simulations, Theor Appl Fract Mech, 97, 236-249 (2018) · doi:10.1016/j.tafmec.2018.08.008
[43] Song, C.; Wolf, JP, The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics, Comput Methods Appl Mech Eng, 147, 3-4, 329-355 (1997) · Zbl 0897.73069 · doi:10.1016/S0045-7825(97)00021-2
[44] Song, C.; Ooi, ET; Natarajan, S., A review of the scaled boundary finite element method for two-dimensional linear elastic fracture mechanics, Eng Fract Mech, 187, 45-73 (2018) · doi:10.1016/j.engfracmech.2017.10.016
[45] Wolf, JP; Song, C., The scaled boundary finite-element method-a primer: derivations, Comput Struct, 78, 1-3, 191-210 (2000) · doi:10.1016/S0045-7949(00)00099-7
[46] Song, C.; Wolf, JP, The scaled boundary finite-element method-a primer: solution procedures, Comput Struct, 78, 1-3, 211-225 (2000) · doi:10.1016/S0045-7949(00)00100-0
[47] Egger, A.; Pillai, U.; Agathos, K.; Kakouris, E.; Chatzi, E.; Aschroft, IA; Triantafyllou, SP, Discrete and phase field methods for linear elastic fracture mechanics: a comparative study and state-of-the-art review, Appl Sci, 9, 12, 2436 (2019) · doi:10.3390/app9122436
[48] Sedmak, A., Computational fracture mechanics: an overview from early efforts to recent achievements, Fatigue Fract Eng Mater Struct, 41, 12, 2438-2474 (2018) · doi:10.1111/ffe.12912
[49] Ambati, M.; Gerasimov, T.; De Lorenzis, L., A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput Mech, 55, 2, 383-405 (2015) · Zbl 1398.74270 · doi:10.1007/s00466-014-1109-y
[50] Francfort, GA; Marigo, J-J, Revisiting brittle fracture as an energy minimization problem, J Mech Phys Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060 · doi:10.1016/S0022-5096(98)00034-9
[51] Nguyen, T-T; Yvonnet, J.; Zhu, Q-Z; Bornert, M.; Chateau, C., A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography, Comput Methods Appl Mech Eng, 312, 567-595 (2016) · Zbl 1439.74243 · doi:10.1016/j.cma.2015.10.007
[52] Hansen-Dörr, AC; Dammaß, F.; de Borst, R.; Kästner, M., Phase-field modeling of crack branching and deflection in heterogeneous media, Eng Fract Mech, 232 (2020) · doi:10.1016/j.engfracmech.2020.107004
[53] Teichtmeister, S.; Kienle, D.; Aldakheel, F.; Keip, M-A, Phase field modeling of fracture in anisotropic brittle solids, Int J Non-Linear Mech, 97, 1-21 (2017) · doi:10.1016/j.ijnonlinmec.2017.06.018
[54] Li, B.; Peco, C.; Millán, D.; Arias, I.; Arroyo, M., Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy, Int J Numer Methods Eng, 102, 3-4, 711-727 (2015) · Zbl 1352.74290 · doi:10.1002/nme.4726
[55] Doan, DH; Bui, TQ; Duc, ND; Fushinobu, K., Hybrid phase field simulation of dynamic crack propagation in functionally graded glass-filled epoxy, Compos Part B Eng, 99, 266-276 (2016) · doi:10.1016/j.compositesb.2016.06.016
[56] Dinachandra, M.; Alankar, A., A phase-field study of crack propagation and branching in functionally graded materials using explicit dynamics, Theor Appl Fract Mech, 109 (2020) · doi:10.1016/j.tafmec.2020.102681
[57] Kumar, PAV; Dean, A.; Reinoso, J.; Lenarda, P.; Paggi, M., Phase field modeling of fracture in functionally graded materials: \( \gamma \)-convergence and mechanical insight on the effect of grading, Thin-Walled Struct, 159 (2021) · doi:10.1016/j.tws.2020.107234
[58] Karma, A.; Kessler, DA; Levine, H., Phase-field model of mode III dynamic fracture, Phys Rev Lett, 87, 4 (2001) · doi:10.1103/PhysRevLett.87.045501
[59] Borden, MJ; Verhoosel, CV; Scott, MA; Hughes, TJ; Landis, CM, A phase-field description of dynamic brittle fracture, Comput Methods Appl Mech Eng, 217, 77-95 (2012) · Zbl 1253.74089 · doi:10.1016/j.cma.2012.01.008
[60] Hofacker, M.; Miehe, C., Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation, Int J Fract, 178, 1, 113-129 (2012) · doi:10.1007/s10704-012-9753-8
[61] Ambati, M.; Gerasimov, T.; De Lorenzis, L., Phase-field modeling of ductile fracture, Comput Mech, 55, 5, 1017-1040 (2015) · Zbl 1329.74018 · doi:10.1007/s00466-015-1151-4
[62] Miehe, C.; Hofacker, M.; Schänzel, L-M; Aldakheel, F., Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids, Comput Methods Appl Mech Eng, 294, 486-522 (2015) · Zbl 1423.74837 · doi:10.1016/j.cma.2014.11.017
[63] Kuhn, C.; Noll, T.; Müller, R., On phase field modeling of ductile fracture, GAMM-Mitteilungen, 39, 1, 35-54 (2016) · Zbl 1397.74027 · doi:10.1002/gamm.201610003
[64] Mesgarnejad, A.; Imanian, A.; Karma, A., Phase-field models for fatigue crack growth, Theor Appl Fract Mech, 103 (2019) · doi:10.1016/j.tafmec.2019.102282
[65] Carollo, V.; Reinoso, J.; Paggi, M., Modeling complex crack paths in ceramic laminates: a novel variational framework combining the phase field method of fracture and the cohesive zone model, J Eur Ceram Soc, 38, 8, 2994-3003 (2018) · doi:10.1016/j.jeurceramsoc.2018.01.035
[66] Tarafder, P.; Dan, S.; Ghosh, S., Finite deformation cohesive zone phase field model for crack propagation in multi-phase microstructures, Comput Mech, 66, 3, 723-743 (2020) · Zbl 1466.74039 · doi:10.1007/s00466-020-01874-6
[67] Quintanas-Corominas, A.; Turon, A.; Reinoso, J.; Casoni, E.; Paggi, M.; Mayugo, J., A phase field approach enhanced with a cohesive zone model for modeling delamination induced by matrix cracking, Comput Methods Appl Mech Eng, 358 (2020) · Zbl 1441.74195 · doi:10.1016/j.cma.2019.112618
[68] Pham, K.; Marigo, J-J; Maurini, C., The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models, J Mech Phys Solids, 59, 6, 1163-1190 (2011) · Zbl 1270.74015 · doi:10.1016/j.jmps.2011.03.010
[69] Kuhn, C.; Schlüter, A.; Müller, R., On degradation functions in phase field fracture models, Comput Mater Sci, 108, 374-384 (2015) · doi:10.1016/j.commatsci.2015.05.034
[70] Chen, Y.; Vasiukov, D.; Gélébart, L.; Park, CH, A FFT solver for variational phase-field modeling of brittle fracture, Comput Methods Appl Mech Eng, 349, 167-190 (2019) · Zbl 1441.74299 · doi:10.1016/j.cma.2019.02.017
[71] Ernesti, F.; Schneider, M.; Böhlke, T., Fast implicit solvers for phase-field fracture problems on heterogeneous microstructures, Comput Methods Appl Mech Eng, 363 (2020) · Zbl 1436.74062 · doi:10.1016/j.cma.2019.112793
[72] Muixí, A.; Rodríguez-Ferran, A.; Fernández-Méndez, S., A hybridizable discontinuous Galerkin phase-field model for brittle fracture with adaptive refinement, Int J Numer Methods Eng, 121, 6, 1147-1169 (2020) · Zbl 1464.74193 · doi:10.1002/nme.6260
[73] Nagaraja, S.; Elhaddad, M.; Ambati, M.; Kollmannsberger, S.; De Lorenzis, L.; Rank, E., Phase-field modeling of brittle fracture with multi-level hp-fem and the finite cell method, Comput Mech, 63, 6, 1283-1300 (2019) · Zbl 1465.74152 · doi:10.1007/s00466-018-1649-7
[74] Giovanardi, B.; Scotti, A.; Formaggia, L., A hybrid xfem-phase field (xfield) method for crack propagation in brittle elastic materials, Comput Methods Appl Mech Eng, 320, 396-420 (2017) · Zbl 1439.74350 · doi:10.1016/j.cma.2017.03.039
[75] Lo, Y-S; Borden, MJ; Ravi-Chandar, K.; Landis, CM, A phase-field model for fatigue crack growth, J Mech Phys Solids, 132 (2019) · Zbl 1480.74019 · doi:10.1016/j.jmps.2019.103684
[76] Sun, X.; Duddu, R., A poro-damage phase field model for hydrofracturing of glacier crevasses, Extreme Mech Lett, 45 (2021) · doi:10.1016/j.eml.2021.101277
[77] Clayton, T.; Duddu, R.; Siegert, M.; Martínez-Pañeda, E., A stress-based poro-damage phase field model for hydrofracturing of creeping glaciers and ice shelves, Eng Fract Mech, 272 (2022) · doi:10.1016/j.engfracmech.2022.108693
[78] Mo, X.; Zhi, H.; Xiao, Y.; Hua, H.; He, L., Topology optimization of cooling plates for battery thermal management, Int J Heat Mass Transf, 178 (2021) · doi:10.1016/j.ijheatmasstransfer.2021.121612
[79] Andreasen, CS; Sigmund, O., Topology optimization of fluid-structure-interaction problems in poroelasticity, Comput Methods Appl Mech Eng, 258, 55-62 (2013) · Zbl 1286.74075 · doi:10.1016/j.cma.2013.02.007
[80] Lógó, J.; Ismail, H., Milestones in the 150-year history of topology optimization: a review, Comput Assist Methods Eng Sci, 27, 2-3, 97-132 (2020)
[81] Bendsøe, MP, Optimal shape design as a material distribution problem, Struct Optim, 1, 4, 193-202 (1989) · doi:10.1007/BF01650949
[82] Bendsøe, MP; Sigmund, O., Material interpolation schemes in topology optimization, Arch Appl Mech, 69, 9, 635-654 (1999) · Zbl 0957.74037
[83] Sokolowski, J.; Zochowski, A., On the topological derivative in shape optimization, SIAM J Control Optim, 37, 4, 1251-1272 (1999) · Zbl 0940.49026 · doi:10.1137/S0363012997323230
[84] Allaire, G.; Jouve, F.; Toader, A-M, A level-set method for shape optimization, C R Math, 334, 12, 1125-1130 (2002) · Zbl 1115.49306 · doi:10.1016/S1631-073X(02)02412-3
[85] Allaire, G.; Jouve, F.; Toader, A-M, Structural optimization using sensitivity analysis and a level-set method, J Comput Phys, 194, 1, 363-393 (2004) · Zbl 1136.74368 · doi:10.1016/j.jcp.2003.09.032
[86] Wang, MY; Wang, X.; Guo, D., A level set method for structural topology optimization, Comput Methods Appl Mech Eng, 192, 1-2, 227-246 (2003) · Zbl 1083.74573 · doi:10.1016/S0045-7825(02)00559-5
[87] Xie, YM; Steven, GP, A simple evolutionary procedure for structural optimization, Comput Struct, 49, 5, 885-896 (1993) · doi:10.1016/0045-7949(93)90035-C
[88] Li, B.; Huang, C.; Li, X.; Zheng, S.; Hong, J., Non-iterative structural topology optimization using deep learning, Comput-Aided Des, 115, 172-180 (2019) · doi:10.1016/j.cad.2019.05.038
[89] Rade, J.; Balu, A.; Herron, E.; Pathak, J.; Ranade, R.; Sarkar, S.; Krishnamurthy, A., Algorithmically-consistent deep learning frameworks for structural topology optimization, Eng Appl Artif Intel, 106 (2021) · doi:10.1016/j.engappai.2021.104483
[90] Chi, H.; Zhang, Y.; Tang, TLE; Mirabella, L.; Dalloro, L.; Song, L.; Paulino, GH, Universal machine learning for topology optimization, Comput Methods Appl Mech Eng, 375 (2021) · Zbl 1506.74267 · doi:10.1016/j.cma.2019.112739
[91] Sigmund, O.; Maute, K., Topology optimization approaches, Struct Multidiscip Optim, 48, 6, 1031-1055 (2013) · doi:10.1007/s00158-013-0978-6
[92] Jihong Z, Han Z, Chuang W, Lu Z, Shangqin Y, Zhang W (2021) A review of topology optimization for additive manufacturing: status and challenges. Chin J Aeronaut 34(1):91-110
[93] Bourdin, B.; Chambolle, A., Design-dependent loads in topology optimization, ESAIM Control Optim Calc Var, 9, 19-48 (2003) · Zbl 1066.49029 · doi:10.1051/cocv:2002070
[94] Wallin M, Ristinmaa M, Askfelt H (2012) Optimal topologies derived from a phase-field method. Struct Multidiscip Optim 45(2):171-183 · Zbl 1274.74408
[95] Wang MY, Zhou S (2004) Phase field: a variational method for structural topology optimization. CMES-Comput Model Eng Sci 6(6):547 · Zbl 1152.74382
[96] Burger, M.; Stainko, R., Phase-field relaxation of topology optimization with local stress constraints, SIAM J Control Optim, 45, 4, 1447-1466 (2006) · Zbl 1116.74053 · doi:10.1137/05062723X
[97] Jeong, SH; Yoon, GH; Takezawa, A.; Choi, D-H, Development of a novel phase-field method for local stress-based shape and topology optimization, Comput Struct, 132, 84-98 (2014) · doi:10.1016/j.compstruc.2013.11.004
[98] Salazar de Troya, MA; Tortorelli, DA, Adaptive mesh refinement in stress-constrained topology optimization, Struct Multidiscip Optim, 58, 6, 2369-2386 (2018) · doi:10.1007/s00158-018-2084-2
[99] Jung, M.; Yoo, J., Phase field-based topology optimization of metallic structures for microwave applications using adaptive mesh refinement, Struct Multidiscip Optim, 63, 6, 2685-2704 (2021) · doi:10.1007/s00158-020-02827-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.