×

Free pre-Lie family algebras. (English) Zbl 07835499

Summary: In this paper, we first define the pre-Lie family algebra associated to a dendriform family algebra in the case of a commutative semigroup. Then we construct a pre-Lie family algebra via typed decorated rooted trees, and we prove the freeness of this pre-Lie family algebra. We also construct pre-Lie family operad in terms of typed labeled rooted trees, and we obtain that the operad of pre-Lie family algebras is isomorphic to the operad of typed labeled rooted trees, which generalizes the result of Chapoton and Livernet. In the end, we construct Zinbiel and pre-Poisson family algebras and generalize results of Aguiar.

MSC:

16W99 Associative rings and algebras with additional structure
16S10 Associative rings determined by universal properties (free algebras, coproducts, adjunction of inverses, etc.)

References:

[1] M. Aguiar, Pre-Poisson algebras. Lett. Math. Phys. 54 (2000), no. 4, 263-277 Zbl 1032.17038 MR 1846958 · Zbl 1032.17038
[2] M. Aguiar, Dendriform algebras relative to a semigroup. SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020), paper no. 066 Zbl 1472.18012 MR 4121388 · Zbl 1472.18012
[3] M. R. Bremner and V. Dotsenko, Algebraic operads. An algorithmic companion. CRC Press, Boca Raton, FL, 2016 Zbl 1350.18001 MR 3642294
[4] C. Brouder, Runge-Kutta methods and renormalization. Eur. Phys. J. C 12 (2000), 521-534
[5] Y. Bruned, M. Hairer, and L. Zambotti, Algebraic renormalisation of regularity structures. Invent. Math. 215 (2019), no. 3, 1039-1156 Zbl 1481.16038 MR 3935036 · Zbl 1481.16038
[6] P. Cayley, On the theory of the analytical forms called trees. Philos. Mag. (4) 13 (1857), no. 85, 172-176
[7] F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not. IMRN 2001 (2001), no. 8, 395-408 Zbl 1053.17001 MR 1827084 · Zbl 1053.17001
[8] A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geome-try. Comm. Math. Phys. 199 (1998), no. 1, 203-242 Zbl 0932.16038 MR 1660199 · Zbl 0932.16038
[9] A. Dzhumadil’daev and C. Löfwall, Trees, free right-symmetric algebras, free Novikov algebras and identities. Homology Homotopy Appl. 4 (2002), no. 2, part 1, 165-190 Zbl 1029.17001 MR 1918188 · Zbl 1029.17001
[10] K. Ebrahimi-Fard, Loday-type algebras and the Rota-Baxter relation. Lett. Math. Phys. 61 (2002), no. 2, 139-147 Zbl 1035.17001 MR 1936573 · Zbl 1035.17001
[11] K. Ebrahimi-Fard, J. M. Gracia-Bondía, and F. Patras, A Lie theoretic approach to renor-malization. Comm. Math. Phys. 276 (2007), no. 2, 519-549 Zbl 1136.81395 MR 2346399 · Zbl 1136.81395
[12] L. Foissy, Algebraic structures on typed decorated rooted trees. SIGMA Symmetry Inte-grability Geom. Methods Appl. 17 (2021), paper no. 086 Zbl 07431225 MR 4315488 · Zbl 1504.17002
[13] L. Foissy, Typed binary trees and generalized dendrifom algebras. J. Algebra 586 (2021), 1-61 Zbl 1478.16028 MR 4284995 · Zbl 1478.16028
[14] L. Foissy, D. Manchon, and Y. Y. Zhang, Families of algebraic structures. 2020, arXiv:2005.05116
[15] M. Gerstenhaber, The cohomology structure of an associative ring. Ann. of Math. (2) 78 (1963), 267-288 Zbl 0131.27302 MR 161898 · Zbl 0131.27302
[16] V. Ginzburg and M. Kapranov, Koszul duality for operads. Duke Math. J. 76 (1994), no. 1, 203-272 Zbl 0855.18006 MR 1301191 · Zbl 0855.18006
[17] R. Grossman and R. G. Larson, Hopf-algebraic structure of families of trees. J. Algebra 126 (1989), no. 1, 184-210 Zbl 0717.16029 MR 1023294 · Zbl 0717.16029
[18] L. Guo, Operated semigroups, Motzkin paths and rooted trees. J. Algebraic Combin. 29 (2009), no. 1, 35-62 Zbl 1227.05271 MR 2470114 · Zbl 1227.05271
[19] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration. structure-preserving algorithms for ordinary differential equations. 2nd edn., Springer Ser. Comput. Math. 31, Springer, Berlin, 2006 Zbl 1094.65125 MR 2221614 · Zbl 1094.65125
[20] M. E. Hoffman, Combinatorics of rooted trees and Hopf algebras. Trans. Amer. Math. Soc. 355 (2003), no. 9, 3795-3811 Zbl 1048.16023 MR 1990174 · Zbl 1048.16023
[21] M. Livernet, Rational homotopy of Leibniz algebras. Manuscripta Math. 96 (1998), no. 3, 295-315 Zbl 0906.55005 MR 1638169 · Zbl 0906.55005
[22] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math. (2) 39 (1993), no. 3-4, 269-293 MR 1252069 · Zbl 0806.55009
[23] J.-L. Loday, Cup-product for Leibniz cohomology and dual Leibniz algebras. Math. Scand. 77 (1995), no. 2, 189-196 Zbl 0859.17015 MR 1379265 · Zbl 0859.17015
[24] J.-L. Loday, La renaissance des opérades. Astérisque 237 (1996), 47-74 Zbl 0866.18007 MR 1423619
[25] J.-L. Loday and B. Vallette, Algebraic operads. Grundlehren Math. Wiss. 346, Springer, Heidelberg, 2012 Zbl 1260.18001 MR 2954392
[26] S. Mac Lane, Categories for the working mathematician. 2nd edn., Grad. Texts in Math. 5, Springer, New York, 1971 Zbl 0232.18001 MR 1712872 · Zbl 0232.18001
[27] M. Markl, S. Shnider, and J. Stasheff, Operads in algebra, topology and physics. Math. Surveys Monogr. 96, American Mathematical Society, Providence, RI, 2002 Zbl 1017.18001 MR 1898414
[28] J. P. May, The geometry of iterated loop spaces. Lecture Notes in Math. 271, Springer, Berlin, 1972 Zbl 0244.55009 MR 0420610 · Zbl 0244.55009
[29] M. A. Méndez, Set operads in combinatorics and computer science. SpringerBriefs Math., Springer, Cham, 2015 Zbl 1338.18003 MR 3308919
[30] H. Z. Munthe-Kaas and W. M. Wright, On the Hopf algebraic structure of Lie group integrators. Found. Comput. Math. 8 (2008), no. 2, 227-257 Zbl 1147.16028 MR 2407032 · Zbl 1147.16028
[31] A. Murua, The Hopf algebra of rooted trees, free Lie algebras, and Lie series. Found. Comput. Math. 6 (2006), no. 4, 387-426 Zbl 1116.17004 MR 2271214 · Zbl 1116.17004
[32] E. Panzer, Hopf-algebraic renormalization of Kreimer’s toy model. Master’s thesis, Humboldt-Universität zu Berlin, 2012, arXiv:1202.3552
[33] A. Saïdi, The pre-Lie operad as a deformation of NAP. J. Algebra Appl. 13 (2014), no. 1, paper no. 1350076 Zbl 1296.18010 MR 3096857 · Zbl 1296.18010
[34] E. B. Vinberg, The theory of homogeneous convex cones. Trans. Mosc. Math. Soc. 12 (1963), 303-358 MR 0158414 · Zbl 0138.43301
[35] Y. Zhang, X. Gao, and L. Guo, Matching Rota-Baxter algebras, matching dendriform algebras and matching pre-Lie algebras. J. Algebra 552 (2020), 134-170 Zbl 1444.16058 MR 4067981 · Zbl 1444.16058
[36] Y. Y. Zhang and X. Gao, Free Rota-Baxter family algebras and (tri)dendriform family algebras. Pacific J. Math. 301 (2019), no. 2, 741-766 Zbl 07178913 MR 4023365 · Zbl 1521.17034
[37] Y. Y. Zhang, X. Gao, and D. Manchon, Free (tri)dendriform family algebras. J. Algebra 547 (2020), 456-493 Zbl 1435.16012 MR 4041209 · Zbl 1435.16012
[38] Y. Y. Zhang, X. Gao, and D. Manchon, Free Rota-Baxter family algebras and free (tri)den-driform family algebras. Algebr. Represent. Theory (2023), DOI 10.1007/s10468-022-10198-3 · Zbl 1541.16038 · doi:10.1007/s10468-022-10198-3
[39] Communicated by Adrian Tanasȃ Received 18 April 2021. Yuanyuan Zhang School of Mathematics and Statistics, Henan University, 475004 Kaifeng, P. R. China; zhangyy17@henu.edu.cn Dominique Manchon Laboratoire de Mathématiques Blaise Pascal, CNRS-Université Clermont-Auvergne, 3 place Vasarély, CS 60026, 63178 Aubière, France; dominique.manchon@uca.fr
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.