×

Rota’s program on algebraic operators, rewriting systems and Gröbner-Shirshov bases. (English) Zbl 1524.16086

Summary: Many years ago, Rota proposed a program on determining algebraic identities that can be satisfied by linear operators. After an extended period of dormant, progress on this program picked up speed in recent years, thanks to perspectives from operated algebras and Gröbner-Shirshov bases. These advances were achieved in a series of papers from special cases to more general situations. These perspectives also indicate that Rota’s insight can be manifested very broadly, for other algebraic structures such as Lie algebras, and further in the context of operads. This paper gives a survey on the motivation, early developments and recent advances on Rota’s program, for linear operators on associative algebras and Lie algebras. Emphasis will be given to the applications of rewriting systems and Gröbner-Shirshov bases. Problems, old and new, are proposed throughout the paper to prompt further developments on Rota’s program on algebraic operators.

MSC:

16W99 Associative rings and algebras with additional structure
05A05 Permutations, words, matrices
16Z10 Gröbner-Shirshov bases

References:

[1] Baader, F. and Nipkow, T., Term Rewriting and All That, Cambridge: Cambridge Univ. Press, 1998. · Zbl 0948.68098
[2] Bai C.M., Guo L. and Ni X., Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras, <em>Comm. Math. Phys.</em>, 2010, 297(2): 553-596. · Zbl 1206.17020
[3] Baxter G.,An analytic problem whose solution follows from a simple algebraic identity, <em>Pacific J. Math.</em>, 1960, 10: 731-742. · Zbl 0095.12705
[4] Bokut, L.A. and Chen, Y.Q., Gr&#246;bner-Shirshov bases for Lie algebras: after A. I. Shirshov, <em>Southeast Asian Bull. Math.</em>, 2007, 31(6): 1057-1076. · Zbl 1150.17008
[5] Bordemann M.,Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups, <em>Comm. Math. Phys.</em>, 1990, 135(1): 201-216. · Zbl 0714.58025
[6] Bruned Y., Hairer M. and Zambotti L., Algebraic renormalisation of regularity structures, <em>Invent. Math.</em>, 2019, 215(3): 1039-1156. · Zbl 1481.16038
[7] Carin<span class=“MathJax_Preview” style=“color: inherit;”><span class=“MJXp-math” id=“MJXp-Span-1”><span class=“MJXp-mrow” id=“MJXp-Span-2”><span class=“MJXp-munderover” id=“MJXp-Span-3”><span><span class=“MJXp-over”><span class=“ style=”margin-bottom: -1.17em;“><span class=”MJXp-mo“ id=”MJXp-Span-5“ style=”margin-left: 0px; margin-right: 0px;“>&#732;</span></span><span class=”><span class=“MJXp-mi MJXp-italic” id=“MJXp-Span-4”>e</span></span></span></span></span></span></span></span><script type=“math/tex” id=“MathJax-Element-1”>\tilde{e}</script>na, J.F., Grabowski, J. and Marmo, G., Quantum bi-Hamiltonian systems, <em>Internat. J. Modern Phys. A</em>, 2000, 15(30): 4797-4810.
[8] Cassidy P., Guo L., Keigher W. and Sit W.(eds.), Differential Algebra and Related Topics (Proceedings of the International Workshop held at Rutgers University, Newark, NJ, November 2-3, 2000), River Edge, NJ: World Scientific, 2002.
[9] Connes, A. and Kreimer, D., Hopf algebras, renormalization, and noncommutative geometry, <em>Comm. Math. Phys.</em>, 1998, 199(1): 203-242. · Zbl 0932.16038
[10] Cotlar M.,A unified theory of Hilbert transforms and ergodic theorems, <em>Rev. Mat. Cuyana</em>, 1955, 1: 105-167. · Zbl 0071.33402
[11] Drensky, V. and Fromanek, E., Polynomial Identity Rings, Basel: Birkh&#228;user Verlag, 2004.
[12] Freeman J.M.,On the classification of operator identities, <em>Studies in Appl. Math.</em>, 1972, 51: 73-84. · Zbl 0256.47028
[13] Gao, X. and Guo, L., Rota’s classification problem, rewriting systems and Gr&#246;bner-Shirshov bases, <em>J. Algebra</em>, 2017, 470: 219-253. · Zbl 1423.16047
[14] Guo L.,Operated semigroups, Motzkin paths and rooted trees, <em>J. Algebraic Combin.</em>, 2009, 29(1): 35-62. · Zbl 1227.05271
[15] Guo L.,An Introduction to Rota-Baxter Algebra, Somerville, MA: International Press, 2012. · Zbl 1271.16001
[16] Guo L., Gustavson R. and Li Y.N., An algebraic study of Volterra integral equations and their operator linearity, 2021, arXiv:2008.06756v2. · Zbl 1489.16046
[17] Guo, L. and Keigher, W., On differential Rota-Baxter algebras, <em>J. Pure Appl. Algebra</em>, 2008, 212(3): 522-540. · Zbl 1185.16038
[18] Guo L., Lang H.L. and Sheng Y.H., Integration and geometrization of Rota-Baxter Lie algebras, <em>Adv. Math.</em>,2021, 387: Paper No. 107834, 34 pp. · Zbl 1468.17026
[19] Guo L., Sit W.Y. and Zhang R.H., Differential type operators and Gr&#246;bner-Shirshov bases, <em>J. Symbolic Comput.</em>, 2013, 52: 97-123. · Zbl 1290.16021
[20] Kamp&#233; de F&#233;riet, J., L’&#233;tat actuel du probl&#232;me de la turbulence, I, II, <em>La Sci. A&#233;rienne</em>, 1934, 3: 9-34; ibid., 1935, 4: 12-52.
[21] Kolchin E.R.,Differential Algebra and Algebraic Groups, Pure and Applied Mathematics, Vol. 54, New York: Academic Press, 1973. · Zbl 0264.12102
[22] Kung J.P.S. and Yan, C.H., Six problems of Gian-Carlo Rota in lattice theory and universal algebra, <em>Algebra Universalis</em>, 2003, 49(2): 113-127. · Zbl 1113.06300
[23] Kupershmidt B.A.,What a classical <span class=“MathJax_Preview” style=“color: inherit;”><span class=“MJXp-math” id=“MJXp-Span-6”><span class=“MJXp-mi MJXp-italic” id=“MJXp-Span-7”>r</span></span></span><script type=“math/tex” id=“MathJax-Element-2”>r</script>-matrix really is, <em>J. Nonlinear Math. Phys.</em>, 1999, 6(4): 448-488. · Zbl 1015.17015
[24] Kurosh A.G.,Free sums of multiple operator algebras, <em>Sibirsk. Mat. Zh.</em>, 1960, 1(1): 62-70 (in Russian). · Zbl 0096.25304
[25] Leroux, P., On some remarkable operads constructed from Baxter operators, 2003, arXiv:math/0311214v1.
[26] Pei, J. and Guo, L., Averaging algebras, Schr&#246;der numbers, rooted trees and operads, <em>J. Algebraic Combin.</em>, 2015, 42(1): 73-109. · Zbl 1332.05153
[27] Procesi C.,Rings with Polynomial Identities, Pure Appl. Math., Vol. 17, New York: Marcel Dekker, 1973. · Zbl 0262.16018
[28] Qiu, J.J. and Chen, Y.Q., Gr&#246;bner-Shirshov bases for Lie <span class=“MathJax_Preview” style=“color: inherit;”><span class=“MJXp-math” id=“MJXp-Span-8”><span class=“MJXp-mi” id=“MJXp-Span-9”>&#937;</span></span></span><script type=“math/tex” id=“MathJax-Element-3”>\Omega</script>-algebras and free Rota-Baxter Lie algebras, <em>J. Algebra Appl.</em>, 2017, 16(10): 1750190, 21 pp. · Zbl 1384.16016
[29] Reutenauer C.,Free Lie Algebras, London Mathematical Society Monographs, New Series, Vol. 7, New York: Oxford Univ. Press, 1993. · Zbl 0798.17001
[30] Reynolds, O., On the dynamic theory of incompressible viscous fluids and the determination of the criterion, <em>Philos. Trans. Roy. Soc. London Ser. A</em>, 1895, 186: 123-164. · JFM 26.0872.02
[31] Ritt J.F.,Differential Equations from the Algebraic Standpoint, Amer. Math. Soc. Colloq. Publ., Vol. 14, New York: AMS, 1934. · JFM 58.0445.06
[32] Rota G.-C.,Baxter algebras and combinatorial identities, I, II, <em>Bull. Amer. Math. Soc.</em>, 1969, 75: 325-329; ibid., 1969, 75: 330-334. · Zbl 0319.05008
[33] Rota G.-C.,Baxter operators, an introduction, In: Gian-Carlo Rota on Combinatorics, Boston, MA: Birkh&#228;user Boston, 1995, 504-512. · Zbl 0841.01031
[34] Semenov-Tyan-Shanskii, M.A., What is a classical <span class=“MathJax_Preview” style=“color: inherit;”><span class=“MJXp-math” id=“MJXp-Span-10”><span class=“MJXp-mi MJXp-italic” id=“MJXp-Span-11”>r</span></span></span><script type=“math/tex” id=“MathJax-Element-4”>r</script>-matrix? <em>Funct. Anal. Appl.</em>, 1983, 17(4): 259-272. · Zbl 0535.58031
[35] Shirshov A.I.,Some algorithm problems for Lie algebras, <em>Sibirsk. Mat. Zh.</em>, 1962, 3(2): 292-296 · Zbl 0104.26004
[36] (in Russian); English Translation: Certain algorithmic problems for Lie algebras, <em>SIGSAM Bull.</em>, 1999, 33(2): 3-6. · Zbl 1097.17502
[37] Tricomi F.G.,On the finite Hilbert transformation, <em>Quart. J. Math. Oxford Ser.</em> (<em>2</em>), 1951, 2: 199-211. · Zbl 0043.10701
[38] Uchino K.,Twisting on associative algebras and Rota-Baxter type operators, <em>J. Noncommut. Geom.</em>, 2010, 4(3): 349-379. · Zbl 1248.16027
[39] Van der Put, M. and Singer, M.F., Galois Theory of Difference Equations, Lecture Notes in Math., Vol. 1666, Berlin: Springer-Verlag, 1997. · Zbl 0930.12006
[40] Wu W.-T.,On the decision problem and the mechanization of theorem-proving in elementary geometry, <em>Sci. Sinica</em>, 1978, 21(2): 159-172. · Zbl 0376.68057
[41] Wu W.-T.,A constructive theory of differential algebraic geometry based on works of J. F. Ritt with particular applications to mechanical theorem-proving of differential geometries, In: Differential Geometry and Differential Equations (Shanghai, 1985), Lecture Notes in Math., Vol. 1255, Berlin: Springer-Verlag, 1987, 173-189. · Zbl 0673.03006
[42] Zhang H.H., Gao X. and Guo L., Rota’s program on algebraic operators for Lie algebras, in preparation.
[43] Zhang T.J., Gao X. and Guo L., Reynolds algebras and their free objects from bracketed words and rooted trees, <em>J. Pure Appl. Algebra</em>,2021, 225(12): 106766, 28 pp. · Zbl 1477.16057
[44] Zhang X.G., Gao X. and Guo L., Free modified Rota-Baxter algebras and Hopf algebras, <em>Int. Electron. J. Algebra</em>, 2019, 25: 12-34. · Zbl 1406.16034
[45] Zhang X.G., Gao X. and Guo L., Modified Rota-Baxter algebras, shuffle products and Hopf algebras, <em>Bull. Malays. Math. Sci. Soc.</em>, 2019, 42(6): 3047-3072. · Zbl 1466.16039
[46] Zhang Y., Gao X. and Guo L., Matching Rota-Baxter algebras, matching dendriform algebras and matching pre-Lie algebras, <em>J. Algebra</em>, 2020, 552: 134-170. · Zbl 1444.16058
[47] Zhang, Y.Y. and Gao, X., Free Rota-Baxter family algebras and (tri)dendriform family algebras, <em>Pacific J. Math.</em>, 2019, 301(2): 741-766. · Zbl 1521.17034
[48] Zheng S.H., Gao X., Guo L. and Sit W.Y., Rota-Baxter type operators, rewriting systems and Gr&#246;bner-Shirshov bases, <em>J. Symbolic Comput.</em>, accepted, arXiv:1412.8055v1.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.