×

\(RB\)-operator and Nijenhuis operator on Hom-associative conformal algebra. (English) Zbl 07916050

Summary: Hom-associative conformal algebra \(\mathcal{A}\) is an associative conformal algebra with a twist map and satisfies the Hom-associative conformal identity. This study aims to introduce the notion of the Rota-Baxter operator \(\mathcal{R}\) on Hom-associative conformal algebra \(\mathcal{A}\). We generalize our study to Hom-dendriform and Hom-tridendriform conformal algebras and give their relation to Hom-preLie conformal algebras. We give the interrelation between dendriform (and tridendriform) algebra with Hom-associative conformal Rota-Baxter algebra. Furthermore, we explore the Nijenhus operator on Hom-associative conformal algebra and describe its relation with Hom-associative Rota-Baxter operator.

MSC:

17A30 Nonassociative algebras satisfying other identities
15A99 Basic linear algebra
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
16G30 Representations of orders, lattices, algebras over commutative rings
Full Text: DOI

References:

[1] Albuquerque, H., Barreiro, E., Caldern, A. J. and Snchez, J. M., On split regular Hom-Lie superalgebras, J. Geom. Phys.128 (2018) 1-11. · Zbl 1434.17023
[2] Andrews, G., Guo, L., Keigher, W. and Ono, K., Baxter algebras and Hopf algebras, Trans. Am. Math. Soc.355(11) (2003) 4639-4656. · Zbl 1056.16025
[3] Chen, D., Xiao-Song, P., Chia, Z. and Yi, Z., Matching Hom-Setting of Rota-Baxter Algebras, Dendriform Algebras, and Pre-Lie Algebras, Adv. Math. Phys.2020 (2020) 1-14. · Zbl 1482.17036
[4] Cheng, S. J., Kac, V. G. and Wakimoto, M., Extensions of conformal modules, in Topological Field Theory, Primitive Forms and Related Topics (Birkhuser, Boston, MA, 1998), pp. 79-129. · Zbl 0937.17019
[5] A. D’Andrea, Structure theory of finite conformal algebras, doctoral dissertation, Massachusetts Institute of Technology (1998).
[6] Asif, S., Luo, L. P., Hong, Y. Y. and Wu, Z., Conformal triple derivations and triple homomorphisms of Lie conformal algebras, Algebra Colloquium30(2) (2023) 263-280. · Zbl 1533.17028
[7] Das, A. and Sen, S., Nijenhuis operators on Hom-Lie algebras, Commun. Algebra50(3) (2022) 1038-1054. · Zbl 1503.17024
[8] Dolguntseva, I., Triviality of the second cohomology group of the conformal algebras \(Cen d_n\) and \(Cu r_n\), St. Petersbg. Math. J.21(1) (2010) 53-63. · Zbl 1200.13022
[9] Dorfman, I., Dirac Structures and Integrability of Nonlinear Evolution Equations, Vol. 18 (Wiley, 1993).
[10] Ebrahimi-Fard, K., On the associative Nijenhuis relation, Electron. J. Comb.11(R38) (2004) 1. · Zbl 1074.17001
[11] Ebrahimi-Fard, K. and Guo, L., Rota-Baxter algebras and dendriform algebras, J. Pure Appl. Algebra212(2) (2008) 320-339. · Zbl 1132.16032
[12] Guo, L. and Keigher, W., Baxter algebras and shuffle products1, Adv. Math.150(1) (2000) 117-149. · Zbl 0947.16013
[13] Guo, L., Lang, H. and Sheng, Y., Integration and geometrization of Rota-Baxter Lie algebras, Adv. Math.387 (2021) 107834. · Zbl 1468.17026
[14] S. Guo, L. Dong and S. Wang, Representations and derivations of Hom-Lie conformal superalgebras, preprint (2018), arXiv:1807.03638.
[15] Guo, S., Zhang, X. and Wang, S., Relative Hom-Hopf modules and total integrals, J. Math. Phys.56(2) (2015) 021701. · Zbl 1318.16034
[16] Hong, Y., Extending structures for associative conformal algebras, Linear Multilinear Algebra67(1) (2019) 196-212. · Zbl 1428.16002
[17] Hong, Y. and Bai, C., On antisymmetric infinitesimal conformal bialgebras, J. Algebra586 (2021) 325-356. · Zbl 1542.16002
[18] Jian, R., Construction of Rota-Baxter algebras via Hopf module algebras, Sci. China Math.57(11) (2014) 2321-2328. · Zbl 1316.16023
[19] Leroux, P., Construction of Nijenhuis operators and dendriform trialgebras, Int. J. Math. Math. Sci.49 (2004) 2595-2615. · Zbl 1116.17002
[20] Liu, J. F., Sheng, Y. H., Zhou, Y. Q. and Bai, C. M., Nijenhuis operators on \(n\)-Lie algebras, Commun. Theor. Phys.65(6) (2016) 659. · Zbl 1345.17006
[21] Loday, J. L., Dialgebras, in Dialgebras and Related Operads (Springer, Berlin, 2001), pp. 7-66. · Zbl 0999.17002
[22] Loday, J. L. and Ronco, M., Trialgebras and families of polytopes, Contemp. Math.346 (2004) 369-398. · Zbl 1065.18007
[23] Ma, T. and Liu, L., Rota-Baxter coalgebras and Rota-Baxter bialgebras, Linear Multilinear Algebra64(5) (2016) 968-979. · Zbl 1355.16036
[24] Makhlouf, A., Hom-dendriform algebras and Rota-Baxter Hom-algebras, in Operads and Universal Algebra (World Scientific, 2012), pp. 147-171. · Zbl 1351.17035
[25] Makhlouf, A. and Silvestrov, S., Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras, in Generalized Lie Theory in Mathematics, Physics and Beyond (Springer, Berlin, 2009), pp. 189-206. · Zbl 1173.16019
[26] Makhlouf, A. and Silvestrov, S., Hom-algebras and Hom-coalgebras, J. Algebra Appl.9(4) (2010) 553-589. · Zbl 1259.16041
[27] G. C. Rota and J. P. Kung, Gian-Carlo Rota on Combinatorics: Introductory Papers and Commentaries (Birkhäuser, 1995). · Zbl 0841.01031
[28] Semenov-Tyan-Shanskii, M. A., What is a classical \(r\)-matrix?Funct. Anal. Appl.17(4) (1983) 259-272. · Zbl 0535.58031
[29] Wang, Q., Sheng, Y., Bai, C. and Liu, J., Nijenhuis operators on pre-Lie algebras, Commun. Contemp. Math.21(7) (2019) 1850050. · Zbl 1439.17023
[30] Yuan, L., \( \mathcal{O} \)-operators and Nijenhius operators of associative conformal algebras, J. Algebra609 (2022) 245-291. · Zbl 1520.16002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.