×

Mini-workshop: Poisson and Poisson-type algebras. Abstracts from the mini-workshop held October 15–20, 2023. (English) Zbl 07921221

Summary: The first historical encounter with Poisson-type algebras is with Hamiltonian mechanics. With the abstraction of many notions in Physics, Hamiltonian systems were geometrized into manifolds that model the set of all possible configurations of the system, and the cotangent bundle of this manifold describes its phase space, which is endowed with a Poisson structure. Poisson brackets led to other algebraic structures, and the notion of Poisson-type algebra arose, including transposed Poisson algebras, Novikov-Poisson algebras, or commutative pre-Lie algebras, for example. These types of algebras have long gained popularity in the scientific world and are not only of their own interest to study, but are also an important tool for researching other mathematical and physical objects.

MSC:

17-06 Proceedings, conferences, collections, etc. pertaining to nonassociative rings and algebras
00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
17B63 Poisson algebras
17A30 Nonassociative algebras satisfying other identities
Full Text: DOI

References:

[1] A. Agore, A. Gordienko, J. Vercruysse, V -universal Hopf algebras (co)acting on Ω-algebras, Commun. Contemp. Math. 25 (2023), 2150095. · Zbl 1517.16027
[2] A. Agore, Universal coacting Poisson Hopf algebras, Manuscripta Math. 165 (2021), 255-268. · Zbl 1470.16060
[3] A. Agore, A. Gordienko, J. Vercruysse, Equivalences of (co)module algebra structures over Hopf algebras, J. Noncommut. Geom. 15 (2021), 951-993. · Zbl 1491.16042
[4] A. Agore, G. Militaru, A new invariant for finite dimensional Leibniz/Lie algebras, J. Algebra 562 (2020), 390-409. · Zbl 1495.17002
[5] A. Ardizzoni, L. El Kaoutit, C. Menini, Categories of comodules and chain complexes of modules, Intern. J. Math., 23 (2012), 1250109. · Zbl 1275.18015
[6] S. Bhattacharjee, A. Chirvǎsitu, D. Goswami, Quantum Galois groups of subfactors, Inter-nat. J. Math. 33 (2022), 2250013. · Zbl 1506.16046
[7] A. Chirvǎsitu, C. Walton, X. Wang, On quantum groups associated to a pair of preregular forms, J. Noncommut. Geom. 13 (2019), 115-159. · Zbl 1444.16030
[8] T. Guédénon, Fundamental Theorem of Poisson (A, H)-Hopf modules, J. Algebra 595, (2022), 216-243. · Zbl 1484.17035
[9] H. Huang, C. Walton, E. Wicks, R. Won, Universal quantum semigroupoids, J. Pure Appl. Algebra 227 (2023), 107193. · Zbl 1511.16024
[10] H. Huang, C. Van Nguyen, C. Ure, K. Vashaw, P. Veerapen, X. Wang, Twisting Manin’s universal quantum groups and comodule algebras, arXiv:2209.11621.
[11] Yu. Manin, Quantum groups and noncommutative geometry, Universite de Montreal, Centre de Recherches Mathematiques, Montreal, QC, 1988. · Zbl 0724.17006
[12] G. Militaru, The automorphisms group and the classification of gradings of finite dimen-sional associative algebras, Results Math. 77 (2022), 13. · Zbl 1480.16071
[13] D. Tambara, The coendomorphism bialgebra of an algebra, J. Fac. Sci. Univ. Tokyo Math. 37 (1990), 425-456. · Zbl 0717.16030
[14] T. Raedschelders, M. Van den Bergh, The Manin Hopf algebra of a Koszul Artin-Schelter regular algebra is quasi-hereditary Adv. Math. 305 (2017), 601-660. · Zbl 1405.16044
[15] M. Sweedler, Hopf Algebras, Benjamin New York, 1969. References · Zbl 0194.32901
[16] D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math. 4 (2006), 323-357. · Zbl 1151.17301
[17] D. Burde, K. Dekimpe, K. Vercammen, Affine actions on Lie groups and post-Lie algebra structures, Linear Algebra Appl. 437 (2012), 1250-1263. · Zbl 1286.17012
[18] D. Burde, K. Dekimpe, Post-Lie algebra structures and generalized derivations of semisim-ple Lie algebras, Mosc. Math. J. 13 (2013), 1-18. · Zbl 1345.17011
[19] D. Burde, K. Dekimpe, Post-Lie algebra structures on pairs of Lie algebras, J. Algebra 464 (2016), 226-245. · Zbl 1392.17010
[20] D. Burde, V. Gubarev, Rota-Baxter operators and post-Lie algebra structures on semisimple Lie algebras, Comm. Algebra 47 (2019), 2280-2296. · Zbl 1455.17007
[21] D. Burde, K. Dekimpe, M. Monadjem, Rigidity results for Lie algebras admitting a post-Lie algebra structure, Internat. J. Algebra Comput. 32 (2022), 1495-1511. References · Zbl 1526.17019
[22] C. Bai, R. Bai, L. Guo, Y. Wu, Transposed Poisson algebras, Novikov-Poisson algebras, and 3-Lie algebras, J. Algebra 632 (2023), 535-566. · Zbl 1530.17022
[23] P. Beites, B. Ferreira, I. Kaygorodov, Transposed Poisson structures, arXiv:2207.00281.
[24] A. Fernández Ouaridi, On the simple transposed Poisson algebras and Jordan superalgebras, arxiv: 2305.13848.
[25] V. Filippov, δ-Derivations of Lie algebras, Siberian Math. J. 39 (1998), 1218-1230. · Zbl 0936.17020
[26] I. Kantor, Jordan and Lie superalgebras defined by Poisson algebra, Algebra and analysis (Tomsk, 1989 ), 55-80, Amer. Math. Soc. Transi. Ser.2, 151, Amer. Math. Soc., Providence, RI (1992). · Zbl 0803.17012
[27] B. Sartayev, Some generalizations of the variety of transposed Poisson algebras, Commun. Math. 32 (2024), 55-62. References · Zbl 07900710
[28] Y. Bruned, M. Hairer, L. Zambotti, Algebraic renormalisation of regularity structures, In-vent. Math. 215 (2019), 1039-1156. · Zbl 1481.16038
[29] J. F. Cariñena, J. Grabowski, G. Marmo, Quantum bi-Hamiltonian systems, Internat. J. Modern Phys. A. 15 (2000), 4797-4810. · Zbl 1002.81026
[30] V. Dotsenko, A. Khoroshkin, Character formulas for the operad of two compatible brackets and for the bihamiltonian operad, Funct. Anal. Appl. 41 (2007), 1-17. · Zbl 1145.18001
[31] L. Foissy, Algebraic structures on typed decorated rooted trees, SIGMA 17 (2021), 086. · Zbl 1504.17002
[32] I. Golubchik, V. Sokolov, Compatible Lie brackets and integrable equations of the principal chiral model type, Funct. Anal. Appl. 36 (2002), 172-181. · Zbl 1022.17024
[33] I. Golubchik, V. Sokolov, Compatible Lie brackets and the Yang-Baxter equation, Theor. Math. Phys. 146 (2006), 159-169. · Zbl 1177.37067
[34] I. Golubchik, V. Sokolov, Factorization of the loop algebras and compatible Lie brackets, J. Nonlinear Math. Phys. 12 (2005), 343-350. · Zbl 1362.17039
[35] L. Guo, R. Gustavson, Y. Li, An algebraic study of Volterra integral equations and their operator linearity, J. Algebra 595 (2022), 398-433. · Zbl 1489.16046
[36] F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), 1156-1162. · Zbl 0383.35065
[37] A. Odesskii, V. Sokolov, Compatible Lie brackets related to elliptic curve, J. Math. Phys. 47 (2006), 013506. · Zbl 1111.17008
[38] A. Odesskii, V. Sokolov, Algebraic structures connected with pairs of compatible associative algebras, Int. Math. Res. Not. (2006), 1-35. · Zbl 1151.16030
[39] A. Odesskii, V. Sokolov, Pairs of compatible associative algebras, classical Yang-Baxter equation and quiver representations, Com. Math. Phys. 278 (2008), 83-99. · Zbl 1175.17008
[40] H. Strohmayer, Operads of compatible structures and weighted partitions, J. Pure Appl. Algebra 212 (2008), 2522-2534. · Zbl 1149.18006
[41] H. Zhang, X. Gao, L. Guo, Compatible structures of nonsymmetric operads, Manin products and Koszul duality, arXiv:2104.04425.
[42] Y. Zhang, X. Gao, L. Guo, Matching Rota-Baxter algebras, matching dendriform algebras and matching pre-Lie algebras, J. Algebra 552 (2020), 134-170. References · Zbl 1444.16058
[43] C. Bai, R. Bai, L. Guo, Y. Wu, Transposed Poisson algebras, Novikov-Poisson algebras, and 3-Lie algebras, J. Algebra, 632 (2023), 535-566. · Zbl 1530.17022
[44] I. Kaygorodov, M. Khrypchenko, Transposed Poisson structures on Lie incidence algebras, arXiv:2309.00332.
[45] G.-C. Rota, On the foundations of combinatorial theory. I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 2 (1964), 340-368. References · Zbl 0121.02406
[46] S. Launois, I. Oppong, Derivations of a family of quantum second Weyl algebras, Bull. Sci. Math. 184 (2023), 103257. · Zbl 1529.16025
[47] S. Launois, I. Oppong, Poisson derivations of a semiclassical limit of a family of quantum second Weyl algebras, arXiv:2306.07800. References
[48] X. Chen, Y. Chen, F. Eshmatov, S. Yang, Poisson cohomology, Koszul duality, and Batalin-Vilkovisky algebras, J. Noncommut. Geom. 15 (2021), 889-918. · Zbl 1494.53101
[49] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267-288. · Zbl 0131.27302
[50] N. Kowalzig, U. Krähmer, Batalin-Vilkovisky structures on Ext and Tor, J. Reine Angew. Math. 697 (2014), 159-219. · Zbl 1352.16013
[51] S. Lopes, A. Solotar, Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra, J. Noncommut. Geom. 15 (2021), 1373-1407. References · Zbl 1494.16008
[52] J. Dixmier, Enveloping algebras, Graduate Studies in Mathematics, AMS, Providence, 1996. · Zbl 0867.17001
[53] D. Farkas, Poisson polynomial identities, Comm. Algebra 26 (1998), 401-416. · Zbl 0892.17001
[54] D. Farkas, Poisson polynomial identities. II, Arch. Math. (Basel) 72 (1999), 252-260. · Zbl 0932.17021
[55] B. Kostant, A Lie algebra generalization of the Amitsur-Levitski theorem, Adv. Math. 40 (1981), 155-175. · Zbl 0493.17006
[56] A. Giambruno, V. Petrogradsky, Poisson identities of enveloping algebras, Arch. Math. (Basel) 87 (2006), 505-515. · Zbl 1214.17008
[57] S. Mishchenko, V. Petrogradsky, A. Regev, Poisson PI algebras, Trans. Amer. Math. Soc. 359 (2007), 4669-4694. · Zbl 1156.17005
[58] I.Z. Monteiro Alves, V. Petrogradsky, Lie structure of truncated symmetric Poisson algebras, J. Algebra 488 (2017), 244-281. · Zbl 1427.17033
[59] I. Shestakov, Quantization of Poisson superalgebras and speciality of Jordan Poisson su-peralgebras, Algebra and Logic 32 (1994), 309-317. · Zbl 0826.17013
[60] S. Siciliano, Solvable symmetric Poisson algebras and their derived lengths, J. Algebra 543 (2020), 98-100. · Zbl 1447.17015
[61] S. Siciliano, H. Usefi, Solvability of Poisson algebras, J. Algebra 568 (2021), 349-361. · Zbl 1472.17083
[62] S. Siciliano, H. Usefi, On a conjecture about solvability of symmetric Poisson algebras, Bull. Lond. Math. Soc. 53 (2021), 1299-1311. References · Zbl 1508.17029
[63] N. Iyudu, S. J. Sierra, Enveloping algebras with just infinite Gelfand-Kirillov dimension, Ark. Mat 58 (2020), 285-306. · Zbl 1475.16029
[64] S. Launois, O. León Sánchez, On the Dixmier-Moeglin equivalence for Poisson-Hopf alge-bras. Adv. Math. 346 (2019), 48-69. References · Zbl 1472.17080
[65] E. Aladova, A. Krasilnikov, Polynomial identities in nil-algebras, Trans. Amer. Math. Soc. 361 (2009), 5629-5646. · Zbl 1192.16017
[66] S. Amitsur, A generalization of Hilbert’s Nullstellensatz, Proc. Amer. Math. Soc. 8 (1957), 649-656. · Zbl 0079.05401
[67] Yu. Bahturin, Identities in the universal enveloping algebra for Lie superalgebra, Mat. Sbornik 127 (1985), 384-397. · Zbl 0579.17005
[68] Y. Bahturin, Identities in the universal envelopes of Lie algebras, J. Austral. Math. Soc. 18 (1974), 10-21. · Zbl 0298.17013
[69] E. Aljadeff, A. Kanel-Belov, Y. Karasik, Kemer’s theorem for affine PI algebras over a field of characteristic zero, J. Pure Appl. Algebra 220 (2016), 2771-2808. · Zbl 1342.16017
[70] A. Kemer, PI-algebras and nil algebras of bounded index, Trends in ring theory (Miskolc, 1996), 59-69, CMS Conf. Proc., 22, Amer. Math. Soc., Providence, RI, 1998. · Zbl 0891.16019
[71] A. Kemer, Ideal of Identities of Associative Algebras, Translated from the Russian by C. W. Kohls. Translations of Mathematical Monographs, 87. American Mathematical Society, Providence, RI, 1991. vi+81 pp. · Zbl 0732.16001
[72] A. Kemer, Nonmatrix varieties, Algebra and Logic 19 (1981), 157-178. · Zbl 0467.16025
[73] V. Latyshev, Nonmatrix varieties of associative algebras, Mat. Zametki 27 (1980), 147-156. · Zbl 0427.16017
[74] V. Latyshev, Two remarks on P I-algebras, Sibirsk. Mat. Zh. 4 (1963), 1120-1121. · Zbl 0128.25804
[75] D. Passman, Enveloping algebras satisfying a polynomial identity, J. Algebra 134 (1990), 469-490. · Zbl 0713.16013
[76] V. Petrogradsky, Identities in the enveloping algebras for modular Lie superalgebras, J. Algebra 145 (1992), 1-21. · Zbl 0752.17001
[77] V. Petrogradsky, The existence of an identity in a restricted envelope, Math. Notes 49 (1991), 60-66. · Zbl 0729.17007
[78] I. Shestakov, V. Bittencourt, Nonmatrix varieties of nonassociative algebras, arXiv:2209.02770. References
[79] A. Chervov, A. Molev, On higher order Sugawara operators, Int. Math. Res. Not. (2009), 1612-1635. · Zbl 1225.17031
[80] A. Chervov, D. Talalaev, Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence, arXiv:0604128.
[81] A. Molev, Feigin-Frenkel center in types B, C and D, Invent. Math. 191 (2013), 1-34. · Zbl 1266.17016
[82] O. Yakimova, Symmetrisation and the Feigin-Frenkel centre, Compositio Math. 158 (2022), 585-622. References · Zbl 1500.16029
[83] I. Gelfand, V. Ponomarev, Problems of linear algebra and classification of quadruples of sub-spaces in a finite-dimensional vector space, Hilbert Space Operators and Operator Algebras, Colloq. Math. Soc. János Bolyai 5 (1972), 163-237. · Zbl 0294.15002
[84] C. Martínez, E. Zelmanov, Brackets, superalgebras and spectral gap, São Paulo J. Math. Sci. 13 (2019), 112-132. · Zbl 1446.17034
[85] A. Polishchuk, L. Positselski, Quadratic Algebras, AMS, 2005. · Zbl 1145.16009
[86] P. Zusmanovich, Low-dimensional cohomology of current Lie algebras and analogs of the Riemann tensor for loop manifolds, Lin. Algebra Appl. 407 (2005), 71-104. · Zbl 1159.17310
[87] P. Zusmanovich, A compendium of Lie structures on tensor products, J. Math. Sci. 199 (2014), 266-288. · Zbl 1393.17033
[88] P. Zusmanovich, On contact brackets on the tensor product, Lin. Multilin. Algebra 70 (2022), 4695-4706. Reporter: Ivan Kaygorodov · Zbl 1530.17020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.