×

Ingenious solution for the rank reversal problem of TOPSIS method. (English) Zbl 07349278

Summary: Although the classic TOPSIS method is very practical, there may be a problem of rank reversal in the addition, deletion, or replacement of the candidate set, which makes its credibility greatly compromised. Based on the understanding of the classical TOPSIS method, this paper establishes a new improved TOPSIS method called NR-TOPSIS. Firstly, the historical maximum and minimum values of all attribute indicators from a global perspective during the evaluation process are determined. Secondly, according to whether the attributes belong to the benefit attribute or cost attribute, standardization is carried out. And then, in the case where the historical values of attributes are determined, we re-fix the positive ideal solution and the negative ideal solution. At the same time, this paper gives the definition of ranking stable and proves that the NR-TOPSIS proposed satisfies ranking stable, which theoretically guarantees that the rank reversal phenomenon does not exist. Finally, in the verification of examples, the results are consistent with the theoretical analysis, which further support the theoretical analysis. The NR-TOPSIS method overcomes rank reversal, which is not only obviously superior to the classical TOPSIS method but also relatively superior to the R-TOPSIS method which has also overcome rank reversal. It is also superior to other reference methods due to its simple calculation.

MSC:

90B50 Management decision making, including multiple objectives
90C08 Special problems of linear programming (transportation, multi-index, data envelopment analysis, etc.)
Full Text: DOI

References:

[1] Triantaphyllou, E., Multi-Criteria Decision Making Methods: A Comparative Study (2000), Berlin, Germany: Springer Science & Business Media, Berlin, Germany · Zbl 0980.90032
[2] Triantaphyllou, E.; Shu, B.; Nieto Sanchez, S.; Ray, T., Multi-criteria decision making: an operations research approach, Encyclopedia of Electrical and Electronics Engineering, 15, 175-186 (1998)
[3] Triantaphyllou, E.; Sánchez, A., A sensitivity analysis approach for some deterministic multi-criteria decision-making methods, Decision Sciences, 28, 1, 151-194 (1997) · doi:10.1111/j.1540-5915.1997.tb01306.x
[4] Triantaphyllou, E.; Mann, S. H., An examination of the effectiveness of multi-dimensional decision-making methods: a decision-making paradox, Decision Support Systems, 5, 3, 303-312 (1989) · doi:10.1016/0167-9236(89)90037-7
[5] Triantaphyllou, E., Two new cases of rank reversals when the AHP and some of its additive variants are used that do not occur with the multiplicative AHP, Journal of Multi-Criteria Decision Analysis, 10, 1, 11-25 (2001) · Zbl 0985.90057 · doi:10.1002/mcda.284
[6] Liu, P.; Wang, P., Multiple-attribute decision-making based on Archimedean Bonferroni operators of q-rung orthopair fuzzy numbers, IEEE Transactions on Fuzzy Systems, 27, 5, 834-848 (2019) · doi:10.1109/tfuzz.2018.2826452
[7] Zhang, H.; Dong, Y.; Chen, X., The 2-rank consensus reaching model in the multigranular linguistic multiple-attribute group decision-making, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48, 12, 2080-2094 (2018) · doi:10.1109/tsmc.2017.2694429
[8] Wei, G.; Gao, H.; Wei, Y., Some q-rung orthopair fuzzy heronian mean operators in multiple attribute decision making, International Journal of Intelligent Systems, 33, 7, 1426-1458 (2018) · doi:10.1002/int.21985
[9] Ziemba, P., Neat F-PROMETHEE—a new fuzzy multiple criteria decision making method based on the adjustment of mapping trapezoidal fuzzy numbers, Expert Systems with Applications, 110, 363-380 (2018) · doi:10.1016/j.eswa.2018.06.008
[10] Liao, H.; Xu, Z.; Herrera-Viedma, E.; Herrera, F., Hesitant fuzzy linguistic term set and its application in decision making: a state-of-the-art survey, International Journal of Fuzzy Systems, 20, 7, 2084-2110 (2018) · doi:10.1007/s40815-017-0432-9
[11] Baykasoğlu, A.; Subulan, K.; Karaslan, F. S., A new fuzzy linear assignment method for multi-attribute decision making with an application to spare parts inventory classification, Applied Soft Computing, 42, 1-17 (2016) · doi:10.1016/j.asoc.2016.01.031
[12] Pramanik, S.; Mallick, R., TODIM strategy for multi-attribute group decision making in trapezoidal neutrosophic number environment, Complex & Intelligent Systems, 5, 4, 379-389 (2019) · doi:10.1007/s40747-019-0110-7
[13] Pramanik, S.; Mallick, R., VIKOR based MAGDM strategy with trapezoidal neutrosophic numbers, Neutrosophic Sets and Systems, 22, 1-13 (2018)
[14] Biswas, P.; Pramanik, S.; Giri, B. C., TOPSIS strategy for multi-attribute decision making with trapezoidal neutrosophic numbers, Neutrosophic Sets and Systems, 19, 29-39 (2018)
[15] Biswas, P.; Pramanik, S.; Giri, B. C., Distance measure based MADM strategy with interval trapezoidal neutrosophic numbers, Neutrosophic Sets and Systems, 19, 40-46 (2018)
[16] Pramanik, S.; Biswas, P.; Giri, B. C., Hybrid vector similarity measures and their applications to multi-attribute decision making under neutrosophic environment, Neural Computing and Applications, 28, 5, 1163-1176 (2017) · doi:10.1007/s00521-015-2125-3
[17] Yoon, K., Systems Selection by Multiple Attribute Decision Making, PhD Dissertation (1980), Manhattan, KS, USA: Kansas State University, Manhattan, KS, USA
[18] Hwang, C. L.; Yoon, K., Multiple Attribute Decision Making: Methods and Applications, 186 (1981), Heidelberg, Germany: Springer, Heidelberg, Germany · Zbl 0453.90002
[19] Wang, Z.; Hao, H.; Gao, F.; Zhang, Q.; Zhang, J.; Zhou, Y., Multi-attribute decision making on reverse logistics based on DEA-TOPSIS: a study of the Shanghai End-of-life vehicles industry, Journal of Cleaner Production, 214, 730-737 (2019) · doi:10.1016/j.jclepro.2018.12.329
[20] Sun, G.; Guan, X.; Yi, X.; Zhou, Z., An innovative TOPSIS approach based on hesitant fuzzy correlation coefficient and its applications, Applied Soft Computing, 68, 249-267 (2018) · doi:10.1016/j.asoc.2018.04.004
[21] Amiri, M. P., Project selection for oil-fields development by using the AHP and fuzzy TOPSIS methods, Expert Systems with Applications, 37, 9, 6218-6224 (2010) · doi:10.1016/j.eswa.2010.02.103
[22] Sun, C.-C., A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods, Expert Systems with Applications, 37, 12, 7745-7754 (2010) · doi:10.1016/j.eswa.2010.04.066
[23] Paksoy, T.; Pehlivan, N. Y.; Kahraman, C., Organizational strategy development in distribution channel management using fuzzy AHP and hierarchical fuzzy TOPSIS, Expert Systems with Applications, 39, 3, 2822-2841 (2012) · doi:10.1016/j.eswa.2011.08.142
[24] Kutlu, A. C.; Ekmekçioğlu, M., Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP, Expert Systems with Applications, 39, 1, 61-67 (2012) · doi:10.1016/j.eswa.2011.06.044
[25] Torfi, F.; Farahani, R. Z.; Rezapour, S., Fuzzy AHP to determine the relative weights of evaluation criteria and Fuzzy TOPSIS to rank the alternatives, Applied Soft Computing, 10, 2, 520-528 (2010) · doi:10.1016/j.asoc.2009.08.021
[26] Yue, Z., TOPSIS-based group decision-making methodology in intuitionistic fuzzy setting, Information Sciences, 277, 141-153 (2014) · Zbl 1354.91046 · doi:10.1016/j.ins.2014.02.013
[27] Wang, T.; Liu, J.; Li, J.; Niu, C., An integrating OWA-TOPSIS framework in intuitionistic fuzzy settings for multiple attribute decision making, Computers & Industrial Engineering, 98, 185-194 (2016) · doi:10.1016/j.cie.2016.05.029
[28] Pei, Z., A note on the TOPSIS method in MADM problems with linguistic evaluations, Applied Soft Computing, 36, 24-35 (2015) · doi:10.1016/j.asoc.2015.06.042
[29] Zhou, S.; Liu, W.; Chang, W., An improved TOPSIS with weighted hesitant vague information, Chaos, Solitons & Fractals, 89, 47-53 (2016) · Zbl 1360.91085 · doi:10.1016/j.chaos.2015.09.018
[30] Shyur, H.-J., COTS evaluation using modified TOPSIS and ANP, Applied Mathematics and Computation, 177, 1, 251-259 (2006) · Zbl 1100.68622 · doi:10.1016/j.amc.2005.11.006
[31] Zhang, Z.; Wang, Y. Y.; Wang, Z. X., A grey TOPSIS method based on weighted relational coefficient, Journal of Grey System, 26, 2, 112-123 (2014)
[32] Biswas, P.; Pramanik, S.; Giri, B. C., Neutrosophic TOPSIS with group decision making, Fuzzy Multi-Criteria Decision-Making Using Neutrosophic Sets, 369, 543-585 (2018) · doi:10.1007/978-3-030-00045-5_21
[33] Biswas, P.; Pramanik, S.; Giri, B. C., TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment, Neural Computing and Applications, 27, 3, 727-737 (2016) · doi:10.1007/s00521-015-1891-2
[34] Millet, I.; Saaty, T. L., On the relativity of relative measures - accommodating both rank preservation and rank reversals in the AHP, European Journal of Operational Research, 121, 1, 205-212 (2000) · Zbl 0948.91015 · doi:10.1016/s0377-2217(99)00040-5
[35] Zahir, S., Normalisation and rank reversals in the additive analytic hierarchy process: a new analysis, International Journal of Operational Research, 4, 4, 446-467 (2009) · Zbl 1158.90369 · doi:10.1504/ijor.2009.023538
[36] Wedley, W. C.; Schoner, B.; Choo, E. U., Clustering, dependence and ratio scales in AHP: rank reversals and incorrect priorities with a single criterion, Journal of Multi-Criteria Decision Analysis, 2, 3, 145-158 (1993) · Zbl 0839.90006 · doi:10.1002/mcda.4020020304
[37] Maleki, H.; Zahir, S., A comprehensive literature review of the rank reversal phenomenon in the analytic hierarchy process, Journal of Multi-Criteria Decision Analysis, 20, 3-4, 141-155 (2013) · doi:10.1002/mcda.1479
[38] Wang, Y.-M.; Elhag, T. M. S., An approach to avoiding rank reversal in AHP, Decision Support Systems, 42, 3, 1474-1480 (2006) · doi:10.1016/j.dss.2005.12.002
[39] Barzilai, J.; Golany, B., AHP rank reversal, normalization and aggregation rules, INFOR: Information Systems and Operational Research, 32, 2, 57-64 (1994) · Zbl 0805.90001 · doi:10.1080/03155986.1994.11732238
[40] Shin, Y. B.; Lee, S., Note on an approach to preventing rank reversals with addition or deletion of an alternative in analytic hierarchy process, US-China Education Review A, 3, 1, 66-72 (2013)
[41] Zyoud, S. H.; Fuchs-Hanusch, D., A bibliometric-based survey on AHP and TOPSIS techniques, Expert Systems with Applications, 78, 158-181 (2017) · doi:10.1016/j.eswa.2017.02.016
[42] Mousavi-Nasab, S. H.; Sotoudeh-Anvari, A., A new multi-criteria decision making approach for sustainable material selection problem: a critical study on rank reversal problem, Journal of Cleaner Production, 182, 466-484 (2018) · doi:10.1016/j.jclepro.2018.02.062
[43] Mareschal, B.; De Smet, Y.; Nemery, P., Rank reversal in the PROMETHEE II method: some new results, Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management · doi:10.1109/ieem.2008.4738012
[44] Keshavarz-Ghorabaee, M.; Amiri, M.; Zavadskas, E. K., A comparative analysis of the rank reversal phenomenon in the EDAS and TOPSIS methods, Economic Computation and Economic Cybernetics Studies and Research, 52, 3, 121-134 (2018) · doi:10.24818/18423264/52.3.18.08
[45] Wang, Y.-M.; Luo, Y., On rank reversal in decision analysis, Mathematical and Computer Modelling, 49, 5-6, 1221-1229 (2009) · Zbl 1165.91353 · doi:10.1016/j.mcm.2008.06.019
[46] Mufazzal, S.; Muzakkir, S. M., A new multi-criterion decision making (MCDM) method based on proximity indexed value for minimizing rank reversals, Computers & Industrial Engineering, 119, 427-438 (2018) · doi:10.1016/j.cie.2018.03.045
[47] Buede, D. M.; Maxwell, D. T.; disagreement, R., Rank disagreement: a comparison of multi-criteria methodologies, Journal of Multi-Criteria Decision Analysis, 4, 1, 1-21 (1995) · Zbl 0838.90069 · doi:10.1002/mcda.4020040102
[48] Aouadni, S.; Rebai, A.; Turskis, Z., The meaningful mixed data TOPSIS (TOPSIS-MMD) method and its application in supplier selection, Studies in Informatics Control, 26, 3, 353-363 (2017) · doi:10.24846/v26i3y201711
[49] Zavadskas, E. K.; Turskis, Z.; Vilutienė, T.; Lepkova, N., Integrated group fuzzy multi-criteria model: case of facilities management strategy selection, Expert Systems with Applications, 82, 317-331 (2017) · doi:10.1016/j.eswa.2017.03.072
[50] Jahan, A.; Edwards, K. L., A state-of-the-art survey on the influence of normalization techniques in ranking: improving the materials selection process in engineering design, Materials & Design (1980-2015), 65, 335-342 (2015) · doi:10.1016/j.matdes.2014.09.022
[51] Pinter, U.; Pšunder, I., Evaluating construction project success with use of the M-TOPSIS method, Journal of Civil Engineering and Management, 19, 1, 16-23 (2013) · doi:10.3846/13923730.2012.734849
[52] Aires, R. F. D. F.; Ferreira, L., The rank reversal problem in multi-criteria decision making: a literature review, Pesquisa Operacional, 38, 2, 331-362 (2018) · doi:10.1590/0101-7438.2018.038.02.0331
[53] Zavadskas, E. K.; Mardani, A.; Turskis, Z.; Jusoh, A.; Nor, K. M., Development of TOPSIS method to solve complicated decision-making problems—an overview on developments from 2000 to 2015, International Journal of Information Technology & Decision Making, 15, 3, 645-682 (2016) · doi:10.1142/s0219622016300019
[54] Ren, L.; Zhang, Y.; Wang, Y.; Sun, Z., Comparative analysis of a novel M-TOPSIS method and TOPSIS, Applied Mathematics Research eXpress, 2007 (2007) · Zbl 1133.90354 · doi:10.1093/amrx/abm005
[55] García-Cascales, M. S.; Lamata, M. T., On rank reversal and TOPSIS method, Mathematical and Computer Modelling, 56, 5-6, 123-132 (2012) · Zbl 1255.91072 · doi:10.1016/j.mcm.2011.12.022
[56] Yang, W.; Wu, Y., A novel TOPSIS method based on improved grey relational analysis for multiattribute decision-making problem, Mathematical Problems in Engineering, 2019 (2019) · doi:10.1155/2019/8761681
[57] Aires, R. F. D. F.; Ferreira, L., A new approach to avoid rank reversal cases in the TOPSIS method, Computers & Industrial Engineering, 132, 84-97 (2019) · doi:10.1016/j.cie.2019.04.023
[58] Zavadskas, E. K.; Antucheviciene, J.; Turskis, Z.; Adeli, H., Hybrid multiple-criteria decision-making methods: a review of applications in engineering, Scientia Iranica, 23, 1, 1-20 (2016) · doi:10.24200/sci.2016.2093
[59] Zavadskas, E. K.; Vilutienė, T.; Turskis, Z.; Tamosaitienė, J., Contractor selection for construction works by applying saw-g and topsis grey techniques, Journal of Business Economics and Management, 11, 1, 34-55 (2010) · doi:10.3846/jbem.202010.03
[60] Zavadskas, E. K.; Turskis, Z.; Kildienė, S., State of art surveys of overviews on MCDM/MADM methods, Technological and Economic Development of Economy, 20, 1, 165-179 (2014) · doi:10.3846/20294913.2014.892037
[61] Turskis, Z.; Juodagalvienė, B., A novel hybrid multi-criteria decision-making model to assess a stairs shape for dwelling houses, Journal of Civil Engineering and Management, 22, 8, 1078-1087 (2016) · doi:10.3846/13923730.2016.1259179
[62] Gu, H.; Song, B., Study on effectiveness evaluation of weapon systems based on grey relational analysis and TOPSIS, Journal of Systems Engineering and Electronics, 20, 1, 106-111 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.