×

Coupled flow and energy models with phase change in permafrost from pore- to Darcy scale: modeling and approximation. (English) Zbl 07890837

Summary: We consider coupled models of flow and energy with phase change in thawing soils in permafrost at the pore- and Darcy scales. We develop the underlying models from first principles and define robust and conservative discretization algorithms based on cell-centered finite volume discretization on Cartesian grids and implicit time stepping for individual models. To couple the models we consider sequential approaches as well as time-lagging of some of the nonlinear properties. We also derive practical new surrogate models to obtain Darcy scale data from the pore-scale simulations. Finally, we study the sensitivity of models to the data in realistic scenarios. In particular we find that for the dynamics at the time scale of days, the nonlinear flow parameters have most significant impact on pressure, while temperature is less sensitive to data.

MSC:

76S05 Flows in porous media; filtration; seepage
76T30 Three or more component flows
80A22 Stefan problems, phase changes, etc.
Full Text: DOI

References:

[1] Fabrice Calmels, Wendy Clavano, Duane Froese, Progress On X-ray Computed Tomography (CT) Scanning In Permafrost Studies, in: Proceedings of the 5th Canadian Conference on Permafrost, 2010, pp. 1353-1358.
[2] Nicolsky, Dmitry; Romanovsky, Vladimir; Tipenko, Gennadiy, Using in-situ temperature measurements to estimate saturated soil thermal properties by solving a sequence of optimization problems, Cryosphere, 1, 2007
[3] Gao, B.; Coon, E. T., Evaluating simplifications of subsurface process representations for field-scale permafrost hydrology models, Cryosphere, 16, 10, 4141-4162, 2022
[4] Bigler, Lisa; Peszynska, Malgorzata; Vohra, Naren, Heterogeneous Stefan problem and permafrost models with P0-p0 finite elements and fully implicit monolithic solver, Electron. Res. Arch., 30, 4, 1477-1531, 2022 · Zbl 07510645
[5] Peszynska, Malgorzata; Vohra, Naren; Bigler, Lisa, Upscaling an extended heterogeneous Stefan problem from pore-scale to Darcy scale in permafrost, SIAM Multisc. Model. Simul., 22, 1, 436-475, 2024 · Zbl 1537.35039
[6] Vohra, Naren; Peszynska, Malgorzata, Iteratively coupled mixed finite element solver for thermo-hydro-mechanical modeling of permafrost thaw, Results Appl. Math., 22, Article 100439 pp., 2024 · Zbl 07878043
[7] Hilliard, Zachary; Evans, Matthew; Peszynska, Malgorzata, Modeling flow and deformation in porous media from pore-scale to the Darcy-scale, Results Appl. Math., 22, Article 100448 pp., 2024 · Zbl 07878050
[8] Arbogast, Todd; Wheeler, Mary F.; Zhang, Nai-Ying, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media, SIAM J. Numer. Anal., 33, 4, 1669-1687, 1996 · Zbl 0856.76033
[9] Vohra, Naren; Peszynska, Malgorzata, Robust conservative scheme and nonlinear solver for phase transitions in heterogeneous permafrost, J. Comput. Appl. Math., 442, Article 115719 pp., 2024 · Zbl 07834847
[10] Peszynska, Malgorzata; Jenkins, Eleanor; Wheeler, Mary F., Boundary conditions for fully implicit two-phase flow model, (Feng, Xiaobing; Schulze, Tim P., Recent Advances in Numerical Methods for Partial Differential Equations and Applications. Recent Advances in Numerical Methods for Partial Differential Equations and Applications, Contemporary Mathematics Series, vol. 306, 2002, American Mathematical Society), 85-106 · Zbl 1022.76053
[11] Shin, Choah; Alhammali, Azahar; Bigler, Lisa; Vohra, Naren; Peszynska, Malgorzata, Coupled flow and biomass-nutrient growth at pore-scale with permeable biofilm, adaptive singularity and multiple species, Math. Biosci. Eng., 18, 2097-2149, 2021 · Zbl 1471.92219
[12] Bringedal, C.; Berre, I.; Pop, I. S.; Radu, F. A., Upscaling of non-isothermal reactive porous media flow with changing porosity, Transp. Porous Media, 114, 2, 371-393, 2016 · Zbl 1381.76336
[13] Alpak, Faruk O.; Riviere, Beatrice; Frank, Florian, A phase-field method for the direct simulation of two-phase flows in pore-scale media using a non-equilibrium wetting boundary condition, Comput. Geosci., 20, 5, 881-908, 2016 · Zbl 1391.76797
[14] Ray, Nadja; Rupp, Andreas; Schulz, Raphael; Knabner, Peter, Old and new approaches predicting the diffusion in porous media, Transp. Porous Media, 124, 3, 803-824, 2018
[15] Gärttner, Stephan; Frolkovič, Peter; Knabner, Peter; Ray, Nadja, Efficiency and accuracy of micro-macro models for mineral dissolution, Water Resour. Res., 56, 8, 2020 · Zbl 1507.35177
[16] Lake, Larry W., Enhanced Oil Recovery, 1989, Prentice Hall
[17] Hornung, Ulrich, (Homogenization and Porous Media. Homogenization and Porous Media, Interdisciplinary Applied Mathematics, vol. 6, 1997, Springer-Verlag: Springer-Verlag New York), xvi+275 · Zbl 0872.35002
[18] Brun, Mats Kirkesæther; Berre, Inga; Nordbotten, Jan Martin; Radu, Florin Adrian, Upscaling of the coupling of hydromechanical and thermal processes in a quasi-static poroelastic medium, Transp. Porous Media, 124, 137-158, 2018
[19] Efendiev, Yalchin, Multiscale finite element methods: theory and applications, (Multiscale Finite Element Methods : Theory and Applications. Multiscale Finite Element Methods : Theory and Applications, Surveys and Tutorials in the Applied Mathematical Sciences; 4, 2009, Springer: Springer New York, NY) · Zbl 1163.65080
[20] Hansson, Klas; Simunek, Jirka; Mizoguchi, Masaru; Lundin, Lars-Christer; van Genuchten, Martinus, Water flow and heat transport in frozen soil, Vadose Zone J., 3, 527-533, 2004
[21] Stuurop, Joris C.; van der Zee, Sjoerd E. A.T. M.; Voss, Clifford I.; French, Helen K., Simulating water and heat transport with freezing and cryosuction in unsaturated soil: Comparing an empirical, semi-empirical and physically-based approach, Adv. Water Resour., 149, Article 103846 pp., 2021
[22] Nicolsky, D. J.; Romanovsky, V. E.; Tipenko, G. S.; Walker, D. A., Modeling biogeophysical interactions in nonsorted circles in the low Arctic, J. Geophys. Res.: Biogeosci., 113, G3, 2008
[23] Osterkamp, T. E., Freezing and thawing of soils and permafrost containing unfrozen water or brine, Water Resour. Res., 23, 12, 2279-2285, 1987
[24] Ling, Feng; Zhang, Tingjun, A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water, Cold Reg. Sci. & Technol., 38, 1, 1-15, 2004
[25] Arzanfudi, Mehdi Musivand; Al-Khoury, Rafid, Freezing-thawing of porous media: An extended finite element approach for soil freezing and thawing, Adv. Water Resour., 119, 210-226, 2018
[26] Davis, T. Neil, Permafrost: a Guide to Frozen Ground in Transition, 2001, University of Alaska Press
[27] Bear, Jacob; Cheng, Alexander H.-D., Modeling Groundwater Flow and Contaminant Transport, 2010, Springer · Zbl 1195.76002
[28] Wettlaufer, J. S.; Worster, M. Grae, Premelting dynamics, Annu. Rev. Fluid Mech., 38, 1, 427-452, 2006 · Zbl 1101.76061
[29] Dash, J. G.; Rempel, A. W.; Wettlaufer, J. S., The physics of premelted ice and its geophysical consequences, Rev. Mod. Phys., 78, 695-741, 2006
[30] Michalowski, Radoslaw L., A constitutive model of saturated soils for frost heave simulations, Cold Reg. Sci. & Technol., 22, 1, 47-63, 1993
[31] John A. Wheeler, Simulation of Heat Transfer From a Warm Pipeline Buried in Permafrost, in: AICHE Paper 27b Presented 74th National Meeting, 1973, pp. 267-284.
[32] McKenzie, Jeffrey M.; Voss, Clifford I.; Siegel, Donald I., Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs, Adv. Water Resour., 30, 4, 966-983, 2007
[33] Grenier, Christophe; Anbergen, Hauke; Bense, Victor; Chanzy, Quentin; Coon, Ethan; Collier, Nathaniel; Costard, François; Ferry, Michel; Frampton, Andrew; Frederick, Jennifer; Gonçalvès, Julio; Holmén, Johann; Jost, Anne; Kokh, Samuel; Kurylyk, Barret; McKenzie, Jeffrey; Molson, John; Mouche, Emmanuel; Orgogozo, Laurent; Pannetier, Romain; Rivière, Agnès; Roux, Nicolas; Rühaak, Wolfram; Scheidegger, Johanna; Selroos, Jan-Olof; Therrien, René; Vidstrand, Patrik; Voss, Clifford, Groundwater flow and heat transport for systems undergoing freeze-thaw: Intercomparison of numerical simulators for 2D test cases, Adv. Water Resour., 114, 196-218, 2018
[34] Lovell, C. W., Temperature effects on phase composition and strength of partially-frozen soil, Highw. Res. Board Bull., 1957
[35] Rogers, Joel C.; Berger, Alan E.; Ciment, Melvyn, The alternating phase truncation method for numerical solution of a Stefan problem, SIAM J. Numer. Anal., 16, 4, 563-587, 1979 · Zbl 0418.65051
[36] Zhang, Y.; Michalowski, R., Thermal-hydro-mechanical analysis of frost heave and thaw settlement, J. Geotech. Geoenviron. Eng., 2015
[37] Andersland, Orlando B.; Ladanyi, Branko, Frozen Ground Engineering, 2004, Wiley; ASCE: Wiley; ASCE Hoboken, NJ: [Reston, Va.]
[38] Kurylyk, Barret L.; Watanabe, Kunio, The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils, Adv. Water Resour., 60, 160-177, 2013
[39] Shastri, Ajay; Sánchez, Marcelo; Gai, Xuerui; Lee, Moo Y.; Dewers, Thomas, Mechanical behavior of frozen soils: Experimental investigation and numerical modeling, Comput. Geotech., 138, Article 104361 pp., 2021
[40] Wheeler, John A., Permafrost thermal design for the trans-alaska pipeline, Mov. Bound. Problems, 267-284, 1978
[41] Nicolsky, Dmitry; Romanovsky, Vladimir; Panteleev, Gleb, Estimation of soil thermal properties using in-situ temperature measurements in the active layer and permafrost, Cold Reg. Sci. & Technol., 55, 120-129, 2009
[42] Garayshin, V. V.; Nicolzsky, D. J.; Romanovsky, V. E., Numerical modeling of two-dimensional temperature field dynamics across non-deforming ice-wedge polygons, Cold Reg. Sci. & Technol., 161, 115-128, 2019
[43] Brun, Mats Kirkesæther; Ahmed, Elyes; Berre, Inga; Nordbotten, Jan Martin; Radu, Florin Adrian, Monolithic and splitting solution schemes for fully coupled quasi-static thermo-poroelasticity with nonlinear convective transport, Comput. Math. Appl., 80, 8, 1964-1984, 2020 · Zbl 1451.74204
[44] Weiser, Alan; Wheeler, Mary Fanett, On convergence of block-centered finite differences for elliptic problems, SIAM J. Numer. Anal., 25, 2, 351-375, 1988 · Zbl 0644.65062
[45] Lu, Qin; Peszynska, Malgorzata; Wheeler, Mary F., A parallel multi-block black-oil model in multi-model implementation, SPE J., 7, 3, 278-287, 2002, SPE 79535
[46] Patankar, S. V., (Numerical Heat Transfer and Fluid Flow. Numerical Heat Transfer and Fluid Flow, Series in Computational Methods in Mechanics and Thermal Sciences, 1980, Routledge) · Zbl 0521.76003
[47] Umhoefer, Joseph G., Modeling Flow and Transport at Pore Scale with Obstructions, 2019, Oregon State University, Corvallis, Oregon, (Ph.D. thesis)
[48] Ern, Alexandre; Guermond, Jean-Luc, (Theory and Practice of Finite Elements. Theory and Practice of Finite Elements, Applied Mathematical Sciences, vol. 159, 2004, Springer-Verlag: Springer-Verlag New York), xiv+524 · Zbl 1059.65103
[49] Dawson, Clint, Godunov-mixed methods for advection-diffusion equations in multidimensions, SIAM J. Numer. Anal., 30, 5, 1315-1332, 1993 · Zbl 0791.65062
[50] Dawson, Clint, Analysis of an upwind-mixed finite element method for nonlinear contaminant transport equations, SIAM J. Numer. Anal., 35, 5, 1709-1724, 1998 · Zbl 0954.76043
[51] Romanovsky, Vladimir; Osterkamp, Tom, Effects of unfrozen water on heat and mass transport in the active layer and permafrost, Permafr. Periglac. Process., 11, 219-239, 2000
[52] Rooney, Erin C.; Bailey, Vanessa L.; Patel, Kaizad F.; Dragila, Maria; Battu, Anil K.; Buchko, Alexander C.; Gallo, Adrian C.; Hatten, Jeffery; Possinger, Angela R.; Qafoku, Odeta; Reno, Loren. R.; SanClements, Michael; Varga, Tamas; Lybrand, Rebecca A., Soil pore network response to freeze-thaw cycles in permafrost aggregates, Geoderma, 411, Article 115674 pp., 2022
[53] Peszynska, Malgorzata; Trykozko, Anna; Augustson, Kyle, Computational upscaling of inertia effects from porescale to mesoscale, (Allen, G.; Nabrzyski, J.; Seidel, E.; van Albada, D.; Dongarra, J.; Sloot, P., ICCS 2009 Proceedings. ICCS 2009 Proceedings, LNCS, vol. 5544, Part I, 2009, Springer-Verlag: Springer-Verlag Berlin-Heidelberg), 695-704
[54] Peszynska, Malgorzata; Trykozko, Anna, Pore-to-core simulations of flow with large velocities using continuum models and imaging data, Comput. Geosci., 17, 623-645, 2013, DOI: 10.1007/s10596-013-9344-4 · Zbl 1387.76087
[55] Peszynska, Malgorzata; Trykozko, Anna; Sobieski, Wojciech, Forchheimer law in computational and experimental studies of flow through porous media at porescale and mesoscale, (Mathematical Sciences and Applications. Mathematical Sciences and Applications, Current Advances in Nonlinear Analysis and Related Topics, vol. 32, 2010, GAKUTO Internat. Ser. Math. Sci. Appl.), 463-482 · Zbl 1427.76252
[56] Peszynska, Malgorzata; Trykozko, Anna; Iltis, Gabriel; Schlueter, Steffen; Wildenschild, Dorthe, Biofilm growth in porous media: Experiments, computational modeling at the porescale, and upscaling, Adv. Water Resour., 95, 288-301, 2016
[57] Peszynska, Malgorzata; Umhoefer, Joseph; Shin, Choah, Reduced model for properties of multiscale porous media with changing geometry, Computation, 9, 1-44, 2021
[58] van Duijn, C. J.; Mikelić, Andro; Wheeler, Mary F.; Wick, Thomas, Thermoporoelasticity via homogenization: Modeling and formal two-scale expansions, Internat. J. Engrg. Sci., 138, 1-25, 2019 · Zbl 1425.74396
[59] Watanabe, Kunio; Flury, Markus, Capillary bundle model of hydraulic conductivity for frozen soil, Water Resour. Res., 44, 12, 2008
[60] Chu, Jay; Engquist, Björn; Prodanović, Maša; Tsai, Richard, A multiscale method coupling network and continuum models in porous media I: Steady-state single phase flow, Multiscale Model. Simul., 10, 2, 515-549, 2012 · Zbl 1428.76115
[61] Peszynska, Malgorzata; Trykozko, Anna, Convergence and stability in upscaling of flow with inertia from porescale to mesoscale, Int. J. Multisc. Comput. Eng., 9, 2, 215-229, 2011
[62] Costa, Timothy B.; Kennedy, Kenneth; Peszynska, Malgorzata, Hybrid three-scale model for evolving pore-scale geometries, Comput. Geosci., 22, 925-950, 2018 · Zbl 1405.76050
[63] Costa, Timothy, Hybge-Flow3D v2.3.1, 2017, https://github.com/numsol/HybGe-Flow3D
[64] Shin, Choah, BN_Flow simulator, 2021, https://github.com/choahshin/BIO2020
[65] Allen, Michael P.; Tildesley, Dominic J., Computer Simulation of Liquids, 2017, Oxford University Press · Zbl 1372.82005
[66] Liu, Xiaoli; Flemings, Peter B., Dynamic multiphase flow model of hydrate formation in marine sediments, J. Geophys. Res., 112, B03101, 2008
[67] Bigler, Lisa; Peszynska, Malgorzata; Vohra, Naren, Heterogeneous Stefan problem and permafrost models with P0-P0 finite elements and fully implicit monolithic solver, Electron. Res. Arch., 30, 4, 1477-1531, 2022 · Zbl 07510645
[68] Peszynska, Malgorzata; Fara, Tyler; Phelps, Madison; Zhang, Nachuan, Mixed dimensional modeling with overlapping continua on Cartesian grids for complex applications, (Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems, 2023, Springer), in print · Zbl 1529.65079
[69] Harlan, R. L., Analysis of coupled heat-fluid transport in partially frozen soil, Water Resour. Res., 9, 1314-1323, 1973
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.