×

Insensitizing controls of a 1D Stefan problem for the semilinear heat equation. (English) Zbl 1501.93018

Summary: This paper deals with the existence of insensitizing controls for a 1D free-boundary problem of the Stefan kind for a semilinear PDE. The insensitizing problem consists in finding a control function such that some energy functional of the system is locally insensitive to a perturbation of the initial data. As usual, this problem can be reduced to a nonstandard null controllability problem of some nonlinear coupled system governed by a semilinear parabolic equation with a free-boundary and a linear parabolic equation. Nevertheless, in order to solve the later Stefan problem by the fixed point technique, we need to establish the null controllability of the linear coupled system in a non-cylindrical domain. An observability estimate for the corresponding coupled system in a non-cylindrical domain is established, whose proof relies on a new global Carleman estimate.

MSC:

93B05 Controllability
35K05 Heat equation
93C20 Control/observation systems governed by partial differential equations
Full Text: DOI

References:

[1] Ammar-Khodja, F.; Benabdallah, A.; González-Burgos, M.; de Teresa, L., Recent results on the controllability of linear coupled parabolic problems: A survey, Math. Control Relat. Fields, 1, 267-306 (2011) · Zbl 1235.93041 · doi:10.3934/mcrf.2011.1.267
[2] Bodart, O.; Gronzález-Burgos, M.; Pérez-Garcia, R., Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity, Comm. Partial Differ. Equ., 29, 1017-1050 (2004) · Zbl 1067.93035 · doi:10.1081/PDE-200033749
[3] Bodart, O.; Gronzález-Burgos, M.; Pérez-Garcia, R., Insensitizing controls for a heat equation with a nonlinear term involving the state and the gradient, Nonlinear Anal., 57, 5-6, 687-711 (2004) · Zbl 1055.35022 · doi:10.1016/j.na.2004.03.012
[4] Bodart, O.; Gronzález-Burgos, M.; Pérez-Garcia, R., A local result on insensitizing controls for a semilinear heat equation with nonlinear boundary Fourier conditions, SIAM J. Control. Optim., 43, 955-969 (2004) · Zbl 1101.93009 · doi:10.1137/S036301290343161X
[5] Conrad, F.; Hilhorst, D.; Seidman, TI, Well-posedness of a moving boundary problem arising in a dissolution-growth process, Nonlinear Anal., 15, 445-465 (1990) · Zbl 0714.35088 · doi:10.1016/0362-546X(90)90126-2
[6] de Menezes, SB; Límaco, J.; Medeiros, LA, Remarks on null controllability for semilinear heat equation in moving domains, Electron. J. Qual. Theory Differ. Equ., 16, 1-32 (2003) · Zbl 1032.35096 · doi:10.14232/ejqtde.2003.1.16
[7] de Teresa, L., Insensitizing controls for a semilinear heat equation, Comm. Partial Differ. Equ., 25, 39-72 (2000) · Zbl 0942.35028 · doi:10.1080/03605300008821507
[8] Demarque, R.; Fernández-Cara, E., Local null controllability of one-phase Stefan problems in 2D star-shaped domains, Evol. Equ., 18, 1, 245-261 (2018) · Zbl 1390.35108 · doi:10.1007/s00028-017-0399-x
[9] Doubova, A.; Fernández-Cara, E.; González-Burgos, M.; Zuazua, E., On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control. Optim., 41, 3, 798-819 (2002) · Zbl 1038.93041 · doi:10.1137/S0363012901386465
[10] Fernández-Cara, E., de Sousa, I.T.: Local null controllability of a free-boundary problem for the semilinear 1D heat equation, Bull. Braz. Math. Soc. (N.S.). 48 (2) (2017) 303-315 · Zbl 1368.93033
[11] Fernández-Cara, E., Fernández, F., Límaco, J.: Local null controllability of a 1D Stefan problem, Bull. Braz. Math. Soc. (N.S.). 50 (3) (2019) 745-769 · Zbl 1425.93039
[12] Fernández-Cara, E.; de Sousa, IT, Local null controllability of a free-boundary problem for the viscous Burgers equation, SeMA J., 74, 4, 411-427 (2017) · Zbl 1386.35491 · doi:10.1007/s40324-016-0092-y
[13] Fernández-Cara, E.; Zuazua, E., The cost of approximate controllability for heat equations: The linear case, Adv. Differ. Equ., 5, 4-6, 465-514 (2000) · Zbl 1007.93034
[14] Fernández-Cara, E.; Límaco, J.; de Menezes, SB, On the controllability of a free-boundary problem for the 1D heat equation, Syst. Control Lett., 87, 29-35 (2016) · Zbl 1327.93076 · doi:10.1016/j.sysconle.2015.10.011
[15] Friedman, A.: Tutorials in Mathematical Biosciences, III. Cell Cycle, Proliferation, and Cancer, in: Lecture Notes in Mathematics vol. 1872, Springer-Verlag, Berlin, (2006) · Zbl 1122.92030
[16] Friedman, A., PDE problems arising in mathematical biology, Netw. Heterog. Media, 7, 4, 691-703 (2012) · Zbl 1260.49001 · doi:10.3934/nhm.2012.7.691
[17] Fursikov, A.V., Imanvilov, OYu.: Controllability of Evolution Equations. Lecture Notes Series, vol. 34. National University, RIM, Seoul, South Korea (1996) · Zbl 0862.49004
[18] Izadi, M.; Dubljevic, S., Backstepping output-feedback control of moving boundary parabolic PDEs, Eur. J. Control., 21, 27-35 (2015) · Zbl 1403.93105 · doi:10.1016/j.ejcon.2014.11.002
[19] Koga, S.; Diagne, M.; Krstic, M., Control and state estimation of the one-phase Stefan problem via backstepping design, IEEE Trans. Automat. Control, 64, 2, 510-525 (2019) · Zbl 1482.93272
[20] Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type, in: Translations of Mathematical Monographs, 23, American Methematical Society, Providence RI, 1968 · Zbl 0174.15403
[21] Lei, C.; Lin, Z.; Wang, H., The free boundary problem describing information diffusion in online social networks, J. Differ. Equ., 254, 3, 1326-1341 (2013) · Zbl 1273.35326 · doi:10.1016/j.jde.2012.10.021
[22] Límaco, J.; Medeiros, LA; Zuazua, E., Existence, uniqueness and controllability for parabolic equations in non-cylindrical domains, Mat. Contemp., 22, 49-70 (2002) · Zbl 1040.93029
[23] Lions, J.-L.: Quelques notions dans l’analyse et le contrôle de systèmes à données incomplètes. In: Proceedings of the XIth Congress on Differential Equations and Applications/First Congress on Applied Mathematics. Málaga: University of Málaga, (1990), 43-54
[24] Lissy, P., Privat, Y., Simpore, Y.: Insensitizing control for linear and semi-linear heat equations with partially unknown domain. COCV, ESAIM (2018)
[25] Liu, X., Insensitizing controls for a class of quasilinear parabolic equations, J. Differ. Equ., 253, 5, 1287-1316 (2012) · Zbl 1251.35039 · doi:10.1016/j.jde.2012.05.018
[26] Liu, X., Global Carleman estimate for stochastic parabolic equations, and its application, ESAIM Control Optim. Calc. Var., 20, 3, 823-839 (2014) · Zbl 1292.93032 · doi:10.1051/cocv/2013085
[27] Maykut, GA; Untersteiner, N., Some results from a time dependent thermodynamic model of sea ice, J. Geophys. Res., 76, 1550-1575 (1971) · doi:10.1029/JC076i006p01550
[28] Petrus, B., Bentsman, J., Thomas, B.G.: Enthalpy-based feedback control algorithms for the stefan problem, in: Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, 2012, pp. 7037-7042
[29] Santos, MC; Tanaka, TY, An insensitizing control problem for the Ginzburg-Landau equation, J. Optim. Theory Appl., 183, 2, 440-470 (2019) · Zbl 1423.93157 · doi:10.1007/s10957-019-01569-w
[30] Simpore, Y.; Traoré, O., Insensitizing control with constraints on the control for the semilinear heat equation for a more general cost functional, J. Nonlinear Evol. Equ. Appl., 1, 1-12 (2017) · Zbl 1415.35143
[31] Wang, G., Wang, L., Xu, Y., Zhang, Y.: Time optimal control of evolution equations, Progress in Nonlinear Differential Equations and their Applications. 92. Subseries in Control. Birkhäuser/Springer, Cham (2018) · Zbl 1406.49002
[32] Wang, L.; Lan, Y.; Lei, P., Local null controllability of a free-boundary problem for the quasi-linear 1D parabolic equation, J. Math. Anal. Appl., 506, 2, 125676 (2022) · Zbl 1478.93067 · doi:10.1016/j.jmaa.2021.125676
[33] Wettlaufer, JS, Heat flux at the ice-ocean interface, J. Geophys. Res. Oceans, 96, 7215-7236 (1991) · doi:10.1029/90JC00081
[34] Yan, Y.; Sun, F., Insensitizing controls for a forward stochastic heat equation, J. Math. Anal. Appl., 384, 1, 138-150 (2011) · Zbl 1226.60093 · doi:10.1016/j.jmaa.2011.05.058
[35] Yin, Z., Insensitizing controls for the parabolic equation with equivalued surface boundary conditions, Acta Math. Sin., 28, 12, 2373-2394 (2012) · Zbl 1259.93047 · doi:10.1007/s10114-012-1309-3
[36] Zalba, B.; Marin, JM; Cabeza, LF; Mehling, H., Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications, Appl. Thermal Eng., 23, 251-283 (2003) · doi:10.1016/S1359-4311(02)00192-8
[37] Zhang, M.; Liu, X., Insensitizing controls for a class of nonlinear Ginzburg-Landau equations, Sci. China Math., 57, 12, 2635-2648 (2014) · Zbl 1307.93074 · doi:10.1007/s11425-014-4837-8
[38] Zhang, M.; Yin, J.; Gao, H., Insensitizing controls for the parabolic equations with dynamic boundary conditions, J. Math. Anal. Appl., 475, 1, 861-873 (2019) · Zbl 1415.93056 · doi:10.1016/j.jmaa.2019.02.077
[39] Zuazua, E.: Controllability and observability of partial differential equations: some results and open problems, in: Handbook of Differential Equations: Evolutionary Equations, vol. III, Elsevier/North-Holland, Amsterdam, (2007), pp. 527-621 · Zbl 1193.35234
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.