×

Fault-tolerant time-varying formation tracking control for unmanned aerial vehicle swarm systems with switching topologies. (English) Zbl 1512.93071

Summary: This paper investigates fault-tolerant time-varying formation tracking control problems for unmanned aerial vehicle (UAV) swarm systems with switching topologies. Actuator faults such as loss of effectiveness and bias fault are mainly considered. Firstly, based on graph theory, an adaptive fault-tolerant time-varying formation tracking control protocol is constructed with adaptive updating parameters and the relative information of the neighboring UAVs, and the feasibility condition for formation tracking is given. The control protocol does not depend on the information of the actuator fault boundary by using adaptive technology. Then, by constructing a reasonable Lyapunov function and solving the algebraic Riccati equation, the stability of the designed controller is proved. For UAV swarm systems with switching topologies and actuator faults, the formation tracking control protocol designed is adopted to enable the followers form the desired time-varying formation and track the leader’s status at the same time. Finally, the simulation examples are given to illustrate the effectiveness of the theoretical results.

MSC:

93C40 Adaptive control/observation systems
Full Text: DOI

References:

[1] He, W.; Zhang, S., Control design for nonlinear flexible wings of a robotic aircraft, IEEE Transactions on Control Systems Technology, 25, 1, 351-357 (2017) · doi:10.1109/tcst.2016.2536708
[2] He, W.; Yan, Z. C.; Sun, C. Y.; Chen, Y. N., Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer, IEEE Transactions on Cybernetics, 47, 10, 3452-3465 (2017) · doi:10.1109/tcyb.2017.2720801
[3] Yao, M.; Zhao, M., Cooperative attack strategy of unmanned aerial vehicles in adversarial environment, IASC-Intelligent Automation & Soft Computing, 19, 3, 487-496 (2013) · doi:10.1080/10798587.2013.809223
[4] Suh, J.; You, S.; Choi, S.; Oh, S., Vision-based coordinated localization for mobile sensor networks, IEEE Transactions on Automation Science and Engineering, 13, 2, 611-620 (2016) · doi:10.1109/tase.2014.2362933
[5] Williamson, W. R.; Abdel-Hafez, M. F.; Rhee, I., An instrumentation system applied to formation flight, IEEE Transactions on Control Systems Technology, 15, 1, 75-85 (2007) · doi:10.1109/tcst.2006.883241
[6] Yun, B.; Chen, B. M.; Lum, K. Y.; Lee, T. H., Design and implementation of a leader-follower cooperative control system for unmanned helicopters, Journal of Control Theory and Applications, 8, 1, 61-68 (2010) · doi:10.1007/s11768-010-9188-6
[7] Qiu, H. X.; Duan, H. B.; Fan, Y. M., Multiple unmanned aerial vehicle autonomous formation based on the behavior mechanism in pigeon flocks, International Journal of Control Theory and Applications, 32, 10, 1298-1302 (2015)
[8] Li, N. H. M.; Liu, H. H. T., Formation UAV flight control using virtual structure and motion synchronization, Proceedings of the 2010 American Control Conference
[9] Beard, R. W.; Lawton, J.; Hadaegh, F. Y., A coordination architecturefor spacecraft formation control, IEEE Transactions on Control Systems Technology, 9, 6, 777-790 (2001) · doi:10.1109/87.960341
[10] Abdessameud, A.; Tayebi, A., Formation control of VTOL unmanned aerial vehicles with communication delays, Automatica, 47, 11, 2383-2394 (2011) · Zbl 1228.93006 · doi:10.1016/j.automatica.2011.08.042
[11] Xu, Y.; Luo, D.; Li, D.; You, Y.; Duan, H., Target-enclosing affine formation control of two-layer networked spacecraft with collision avoidance, Chinese Journal of Aeronautics, 32, 12, 2679-2693 (2019) · doi:10.1016/j.cja.2019.04.016
[12] Wang, J. H.; Han, L.; Dong, X. W.; Li, Q. D.; Ren, Z., Distributed sliding mode control for time-varying formation tracking of multi-UAV system with a dynamic leader, Aerospace Science and Technology, 111 (2021) · doi:10.1016/j.ast.2021.106549
[13] Song, W. H.; Wang, J. N.; Zhao, S. Y.; Shan, J. Y., Event-triggered cooperative unscented Kalman filtering and its application in multi-UAV systems, Automatica, 105, 264-273 (2019) · Zbl 1429.93390 · doi:10.1016/j.automatica.2019.03.029
[14] Zheng, Y. S.; Ma, J. Y.; Wang, M., Consensus of hybrid multi-agent systems, IEEE Transactions on Neural Networks and Learning Systems, 29, 4, 1359-1365 (2018) · doi:10.1109/tnnls.2017.2651402
[15] Zheng, Y. S.; Zhao, Q.; Ma, J. Y., Second-order consensus of hybrid multi-agent systems, Systems & Control Letters, 125, 51-58 (2019) · Zbl 1425.93256 · doi:10.1016/j.sysconle.2019.01.009
[16] Seo, J.; Kim, Y.; Kim, S.; Tsourdos, A., Consensus-based reconfigurable controller design for unmanned aerial vehicle formation flight, Journal of Aerospace Engineering, 226, 7, 817-829 (2012) · doi:10.1177/0954410011415157
[17] Wen, G. G.; Yu, Y. G.; Peng, Z. X.; Rahmani, A., Consensus tracking for second-order nonlinear multi-agent systems with switching topologies and a time-varying reference state, International Journal of Control, 89, 10, 2096-2106 (2016) · Zbl 1360.93062 · doi:10.1080/00207179.2016.1149221
[18] Du, H. B.; Li, S. H.; Lin, X. Z., Finite-time formation control of multi-agent systems via dynamic output feedback, International Journal of Robust and Nonlinear Control, 23, 14, 1609-1628 (2013) · Zbl 1286.93010 · doi:10.1002/rnc.2849
[19] Dong, X. W.; Zhou, Y.; Ren, Z.; Zhong, Y. S., Distributed formation control for multiple quadrotor UAVs under Markovian switching topologies with partially unknown transition rates, Journal of The Franklin Institute, 356, 11, 5706-5728 (2019) · Zbl 1415.93038
[20] Yu, J. L.; Dong, X. W.; Li, Q. D.; Ren, Z., Time-varying formation tracking for high-order multi-agent systems with switching topologies and a leader of bounded unknown input, Journal of The Franklin Institute, 355, 5, 2808-2825 (2018) · Zbl 1393.93012 · doi:10.1016/j.jfranklin.2018.01.017
[21] Jia, Z. Y.; Wang, J. Q. Y.; Ai, X. L., Distributed adaptive neural networks leader-following formationcontrol for quadrotors with directed switching topologies, ISA Transactions, 93, 93-107 (2019) · doi:10.1016/j.isatra.2019.02.030
[22] Yu, Z. Q.; Zhang, Y. M.; Jiang, B.; Yu, X.; Chai, T. Y., Distributed adaptive fault-tolerant close formation flight control of multiple trailing fixed-wing UAVs, ISA Transactions, 106, 181-199 (2020) · doi:10.1016/j.isatra.2020.07.005
[23] Hua, Y. Z.; Dong, X. W.; Li, Q. D.; Ren, Z., Fault-tolerant time-varying formation tracking for second-order multi-agent systems with actuator faults and a non-cooperative target, IFAC-papers OnLine, 51, 24, 68-73 (2018) · doi:10.1016/j.ifacol.2018.09.530
[24] Yadegar, M.; Meskin, N., Fault-tolerant Control of nonlinear heterogeneous multi-agent systems, Automatica, 127 (2021) · Zbl 1461.93119 · doi:10.1016/J.AUTOMATICA.2021.109514
[25] Xiao, S. Y.; Dong, J. X., Distributed adaptive fuzzy fault-tolerant containment control for heterogeneous nonlinear multi-agent systems, IEEE Transactions on Systems, Man, and Cybernetics, 99, 1-12 (2020) · doi:10.1109/TSMC.2020.3002944
[26] Yu, Z. Q.; Liu, Z. X.; Zhang, Y. M.; Qu, Y. H.; Su, C. Y., Distributed finite-time fault-tolerantcontainment control for multiple unmannedaerial vehicles, IEEE Transactions on Neural Networks and Learning Systems, 31, 6 (2020) · doi:10.1109/TNNLS.2019.2927887
[27] Yu, Z. Q.; Zhang, Y. M.; Jiang, B.; Fun, J.; Jin, Y.; Chai, T. Y., Composite adaptive disturbance observer-baseddecentralized fractional-order fault-tolerantcontrol of networked UAVs, IEEE Transactions on Neural Networks and Learning Systems, 99, 1-15 (2020) · doi:10.1109/TSMC.2020.3010678
[28] Chen, G.; Song, Y. D., Robust fault-tolerant cooperative control of multi-agent systems: a constructive design method, Journal of The Franklin Institute, 352, 10, 4045-4066 (2015) · Zbl 1395.93033 · doi:10.1016/j.jfranklin.2015.05.031
[29] Zhao, L.; Jia, Y. M., Neural network-based adaptive consensus tracking control for multi-agent systems under actuator faults, International Journal of Systems Science, 47, 8, 1931-1942 (2016) · Zbl 1337.93013 · doi:10.1080/00207721.2014.960906
[30] Ni, W.; Cheng, D. Z., Leader-following consensus of multi-agent systems under fixed and switching topologies, Systems & Control Letters, 59, 3, 655-661 (2010) · Zbl 1223.93006 · doi:10.1016/j.sysconle.2010.01.006
[31] Dong, X.; Zhou, Y.; Ren, Z.; Zhong, Y., Time-varying formation control for unmanned aerial vehicles with switching interaction topologies, Control Engineering Practice, 46, 26-36 (2016) · doi:10.1016/j.conengprac.2015.10.001
[32] Dong, X.; Yu, B.; Shi, Z.; Zhong, Y., Time-varying formation controlfor unmanned aerial vehicles: theories and applications, IEEE Transactions on Control Systems Technology, 23, 1, 340-348 (2015) · doi:10.1109/tcst.2014.2314460
[33] Kuriki, Y.; Namerikawa, T., Consensus-based cooperative formationcontrol with collision avoidance for a multi-UAV system, Proceedings of the 2010 American Control Conference
[34] Dong, X. W.; Hua, Y. Z.; Zhou, Y.; Ren, Z.; Zhong, Y. S., Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems, IEEE Transactions on Automation Science and Engineering, 16, 1, 229-240 (2019) · doi:10.1109/tase.2018.2792327
[35] Ren, W.; Beard, R. W., Consensus seeking in multi-agent systems under dynamically changing interaction topologies, IEEE Transactions on Automatic Control, 50, 5, 655-661 (2005) · Zbl 1365.93302 · doi:10.1109/tac.2005.846556
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.