×

Structure of the largest idempotent-product free sequences in semigroups. (English) Zbl 1458.11051

Summary: Let \(\mathcal{S}\) be a finite semigroup, and let \(E(\mathcal{S})\) be the set of all idempotents of \(\mathcal{S}\). Gillam, Hall and Williams proved in 1972 that every \(\mathcal{S}\)-valued sequence \(T\) of length at least \(| \mathcal{S} | - | E(\mathcal{S}) | + 1\) is not (strongly) idempotent-product free, in the sense that it contains a nonempty subsequence the product of whose terms, in the order induced from the sequence \(T\), is an idempotent, which affirmed a question of Erdős. They also showed that the value \(| \mathcal{S} | - | E(\mathcal{S}) | + 1\) is best possible.
Here, motivated by Gillam, Hall and Williams’ work D. W. H. Gillam et al., Bull. Lond. Math. Soc. 4, 143–144 (1972; Zbl 0252.20064)], we determine the structure of the idempotent-product free sequences of length \(| \mathcal{S} \setminus E(\mathcal{S}) |\) when the semigroup \(\mathcal{S}\) (not necessarily finite) is such that \(| \mathcal{S} \setminus E(\mathcal{S}) |\) is finite, and we introduce a couple of structural constants for semigroups that reduce to the classical Davenport constant in the case of finite abelian groups.

MSC:

11B75 Other combinatorial number theory
20M99 Semigroups

Citations:

Zbl 0252.20064

References:

[1] Adhikari, S. D.; Gao, W.; Wang, G., Erdős-Ginzburg-Ziv theorem for finite commutative semigroups, Semigroup Forum, 88, 555-568, (2014) · Zbl 1305.20068
[2] Burgess, D. A., A problem on semi-groups, Studia Sci. Math. Hungar., 4, 9-11, (1969) · Zbl 0186.31303
[3] Gao, W., On Davenport’s constant of finite abelian groups with rank three, Discrete Math., 222, 111-124, (2000) · Zbl 0971.20032
[4] Geroldinger, A.; Halter-Koch, F., Non-unique factorizations. algebraic, combinatorial and analytic theory, Pure Appl. Math., vol. 278, (2006), Chapman & Hall/CRC · Zbl 1113.11002
[5] Geroldinger, A.; Schneider, R., On Davenport’s constant, J. Combin. Theory Ser. A, 61, 147-152, (1992) · Zbl 0759.20008
[6] Geroldinger, A., Additive group theory and non-unique factorizations, (Geroldinger, A.; Ruzsa, I., Combinatorial Number Theory and Additive Group Theory, Advanced Courses in Mathematics-CRM Barcelona, (2009), Birkhäuser Basel), 1-86 · Zbl 1221.20045
[7] Gillam, D. W.H.; Hall, T. E.; Williams, N. H., On finite semigroups and idempotents, Bull. Lond. Math. Soc., 4, 143-144, (1972) · Zbl 0252.20064
[8] Grillet, P. A., Semigroups: an introduction to the structure theory, (1995), Dekker New York · Zbl 0830.20079
[9] Grillet, P. A., Commutative semigroups, (2001), Kluwer Academic Publishers · Zbl 1040.20048
[10] Grynkiewicz, D. J., The large Davenport constant II: general upper bounds, J. Pure Appl. Algebra, 217, 2221-2246, (2013) · Zbl 1288.20029
[11] Olson, J. E., A combinatorial problem on finite abelian groups, I, J. Number Theory, 1, 8-10, (1969) · Zbl 0169.02003
[12] Rogers, K., A combinatorial problem in abelian groups, Math. Proc. Cambridge Philos. Soc., 59, 559-562, (1963) · Zbl 0118.03802
[13] Wang, G., Davenport constant for semigroups II, J. Number Theory, 153, 124-134, (2015) · Zbl 1333.20057
[14] Wang, G., Additively irreducible sequences in commutative semigroups, J. Combin. Theory Ser. A, 152, 380-397, (2017) · Zbl 1403.20067
[15] Wang, G.; Gao, W., Davenport constant of the multiplicative semigroup of the ring \(\mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_r}\)
[16] Wang, G.; Gao, W., Davenport constant for semigroups, Semigroup Forum, 76, 234-238, (2008) · Zbl 1142.20043
[17] Wang, H.; Zhang, L.; Wang, Q.; Qu, Y., Davenport constant of the multiplicative semigroup of the quotient ring \(\frac{\mathbb{F}_p [x]}{\langle f(x) \rangle}\), Int. J. Number Theory, 12, 663-669, (2016) · Zbl 1350.20046
[18] Zhang, L.; Wang, H.; Qu, Y., A problem of Wang on Davenport constant for the multiplicative semigroup of the quotient ring of \(\mathbb{F}_2 [x]\), Colloq. Math., 148, 123-130, (2017) · Zbl 1431.11041
[19] van Emde Boas, P.; Kruyswijk, D., A combinatorial problem on finite abelian groups, 3, (1970), Stichting Math. Centrum Amsterdam, Report ZW 1969-008 · Zbl 0189.31703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.