×

Neimark-Sacker bifurcation and hybrid control in a discrete-time Lotka-Volterra model. (English) Zbl 1454.37092

Summary: We explore the local dynamics, N-S bifurcation, and hybrid control in a discrete-time Lotka-Volterra predator-prey model in \(\mathbb{R}_+^2\). It is shown that \(\forall\) parametric values, model has two boundary equilibria: \( P_{00}(0, 0)\) and \(P_{x 0}(1, 0)\), and a unique positive equilibrium point: \( P_{x y}^+ \left( \frac{d}{c}, \frac{r(c-d)}{bc}\right)\) if \(c > d\). We explored the local dynamics along with different topological classifications about equilibria: \(P_{00}(0,0), P_{x 0}(1,0)\), and \(P_{xy}^+ \left(\frac{d}{c}, \frac{r(c-d)}{bc}\right)\) of the model. It is proved that model cannot undergo any bifurcation about \(P_{00}(0, 0)\) and \(P_{x 0}(1, 0)\) but it undergoes an N-S bifurcation when parameters vary in a small neighborhood of \(P_{x y}^+ \left( \frac{ d}{ c} , \frac{ r \left( c - d\right)}{ b c}\right)\) by using a center manifold theorem and bifurcation theory and meanwhile, invariant close curves appears. The appearance of these curves implies that there exist a periodic or quasiperiodic oscillations between predator and prey populations. Further, theoretical results are verified numerically. Finally, the hybrid control strategy is applied to control N-S bifurcation in the discrete-time model.

MSC:

37N35 Dynamical systems in control
37N25 Dynamical systems in biology
39A30 Stability theory for difference equations
39A28 Bifurcation theory for difference equations
39A50 Stochastic difference equations
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] AllenL. Introduction to Mathematical Biology. New Jersey, USA: Pearson/Prentice Hall; 2007.
[2] BrauerF, Castillo‐ChavezC, Castillo‐ChavezC. Mathematical Models in Population Biology and Epidemiology. New York:Springer; 2001. · Zbl 0967.92015
[3] RajMRS, SelvamAGM, JanagarajR. Stability in a discrete prey‐predator model. Int J Latest Res Sci Technol. 2013;2(1):482‐485.
[4] RäzT. The Volterra principle generalized. Philosophy of Science. 2017;84(4):737‐760.
[5] BeddingtonJ, FreeC, LawtonJ. Dynamic complexity in predator‐prey models framed in difference equations. Nature. 1975;225:58‐60.
[6] ChenF. Permanence and global attractivity of a discrete multispecies Lotka‐Volterra competition predator‐prey system. Appl Math Comput. 2006;181:3‐12. · Zbl 1113.92061
[7] ChenX. Periodicity in a nonlinear discrete predator‐prey system with state dependent delays. Nonlinear Anal RWA. 2007;8:435‐446. · Zbl 1152.34367
[8] FangN, ChengX. Permanence of a discrete multispecies Lotka‐Volterra competition predator‐prey system with delays. Nonlinear Anal RWA. 2008;9:2185‐2195. · Zbl 1156.39302
[9] FangQ, LiX, CaoM. Dynamics of a discrete predator‐prey system with Beddington‐Deangelis function response. Appl Math. 2012;3:389‐394.
[10] GuE. The nonlinear analysis on a discrete host‐parasitoid model with pesticidal interference. Commun Nonlinear Sci Numer Simulat. 2009;14:2720‐2727. · Zbl 1221.37186
[11] AgizaHN, ElabbssyEM. Chaotic dynamics of a discrete prey‐predator model with Holling type II. Nonlinear Anal RWA. 2009;10:116‐129. · Zbl 1154.37335
[12] HuoH, LiW. Stable periodic solution of the discrete periodic Leslie‐Gower predator‐prey model. Math Comput Model. 2004;40:261‐269. · Zbl 1067.39008
[13] LiL, ZhiJ. Global stability of periodic solutions for a discrete predator‐prey system with functional response. Nonlinear Dyn. 2003;72:507‐516. · Zbl 1269.92070
[14] LuC, ZhangL. Permanence and global attractivity of a discrete semi‐ratio dependent predator‐prey system with Holling II type functional response. J Appl Math Comput. 2010;33:125‐135. · Zbl 1213.49046
[15] LiuX, XiaoD. Complex dynamic behaviors of a discrete‐time predator‐prey system. Chaos Solitons Fractals. 2007;32:80‐94. · Zbl 1130.92056
[16] MorganM, WilsonW, KnightT. Plant population dynamics, pollinator foraging, and the selection of self‐fertilization. Am Nat. 2005;166:169‐183.
[17] ZhaoM, ZhangL. Permanence and chaos in a host‐parasitoid model with prolonged diapause for the host. Commun Nonlinear Sci Numer Simulat. 2009;14:4197‐4203.
[18] ZhaoM, ZhangL, ZhuJ. Dynamics of a host‐parasitoid model with prolonged diapause for parasitoid. Commun Nonlinear Sci Numer Simulat. 2011;16:455‐462. · Zbl 1221.37208
[19] ZhuL, ZhaoM. Dynamic complexity of a host‐parasitoid ecological model with the Hassell growth function for the host. Chaos Solitons Fractals. 2009;39:1259‐1269. · Zbl 1197.37133
[20] ZhangL, ZhangC, ZhaoM. Dynamic complexities in a discrete predator‐prey system with lower critical point for the prey. Mathematics and Computers in Simulation. 2014;105:119‐131. · Zbl 1519.92226
[21] ElaydiS, ChaosD. With Application in Science and Engineering. Chapman & Hall/CRC:Second Edition; 2008. · Zbl 1153.39002
[22] GuckenheimerJ, HolmesP. Nonlinear Oscillations Dynamical Systems and Bifurcation of Vector Fields. New York:Springer; 1983. · Zbl 0515.34001
[23] KuznetsovYA. Elements of Applied Bifurcation Theory. New York:Springer; 2004. · Zbl 1082.37002
[24] HuZ, TengZ, ZhangL. Stability and bifurcation analysis of a discrete predator‐prey model with nonmonotonic functional response. Nonlinear Anal Real World Appl. 2011;12(4):2356‐2377. · Zbl 1215.92063
[25] KhanAQ, MaJ, XiaoD. Bifurcation of two‐dimensional discrete time plant‐herbivore system. Commun Nonlinear Sci Num Simul. 2016;39:185‐198. · Zbl 1510.92166
[26] KhanAQ, MaJ, XiaoD. Global dynamics and bifurcation analysis of a host‐parasitoid model with strong Allee effect. J Biol Dyn. 2017;11(1):121‐146. · Zbl 1448.92377
[27] JingZ, YangJ. Bifurcation and chaos in discrete‐time predator‐prey system. Chaos Solitons Fractals. 2006;27(1):259‐277. · Zbl 1085.92045
[28] ZhangCH, YanXP, CuiGH. Hopf bifurcations in a predator‐prey system with a discrete delay and a distributed delay. Nonlinear Anal Real World Appl. 2010;11(5):4141‐4153. · Zbl 1206.34104
[29] SenM, BanerjeeM, MorozovA. Bifurcation analysis of a ratio‐dependent prey‐predator model with the Allee effect. Ecol Complex. 2012;11:12‐27.
[30] YuanLG, YangQG. Bifurcation, invariant curve and hybrid control in a discrete‐time predator‐prey system. Appl Math Model. 2015;39(8):2345‐2362. · Zbl 1443.92172
[31] ChenZ, YuP. Controlling and anti‐controlling Hopf bifurcations in discrete maps using polynomial functions. Chaos, Solitons Fractals. 2005;26(4):1231‐1248. · Zbl 1093.37508
[32] ElabbasyEM, AgizaHN, El‐MetwallyH, ElsadanyAA. Bifurcation analysis, chaos and control in the Burgers mapping. Int J Nonlinear Sci. 2007;4(3):171‐185. · Zbl 1394.37123
[33] ChenG, FangJQ, HongY, QinH. Controlling Hopf bifurcations: Discrete‐time systems. Discret Dyn Nat Soc. 2000;5(1):29‐33. · Zbl 1229.93113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.